Otwarty dostęp

SAGA GIS for Computing Multispectral Vegetation Indices by Landsat TM for Mapping Vegetation Greenness


Zacytuj

Abburu S. & Golla S.B. (2015): Satellite Image Classification Methods and Techniques: A Review. International Journal of Computer Applications, 119(8): 20-25.10.5120/21088-3779 Search in Google Scholar

Ahmet K.R. & Akter S. (2017): Analysis of landcover change in southwest Bengal delta due to floods by NDVI, NDWI and K-means cluster with landsat multi-spectral surface reflectance satellite data. Remote Sensing Applications: Society and Environment, 8: 168-181.10.1016/j.rsase.2017.08.010 Search in Google Scholar

Arnalds O. (2001): Soil Erosion in Iceland. Agricultural Research Institute, Soil Conservation. Service, Reykjavík. Search in Google Scholar

Arnalds O., Gisladottir F., Sigurjonsson H. (2001): Sandy deserts of Iceland: an overview. Journal of Arid Environments, 47: 359-371.10.1006/jare.2000.0680 Search in Google Scholar

Arnalds O. (2015): The Soils of Iceland. Springer, Dordrecht.10.1007/978-94-017-9621-7 Search in Google Scholar

Baret F. & Guyot G. (1991): Potential and limitations of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 104: 88-95. Search in Google Scholar

Blauvelt D.J., Russell A.J., Large A.R.G., Tweed F.S., Hiemstra J.F., Kulessa B., Evans D.J.A., Waller R.I. (2020): Controls on jökulhlaup-transported buried ice melt-out at Skeiðarársandur, Iceland: Implications for the evolution of ice-marginal environments. Geomorphology, 360: 107-164.10.1016/j.geomorph.2020.107164 Search in Google Scholar

Böhner J., McCloy K.R., Strobl J. (2006): SAGA – Analysis and Modelling Applications. Göttinger Geographische Abhandlungen. Search in Google Scholar

Böhner J., Blaschke T., Montanarella L.(2008): SAGA – Seconds Out. Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie, 19. Search in Google Scholar

Broge N.H. & Leblanc E. (2001): Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76: 156-172.10.1016/S0034-4257(00)00197-8 Search in Google Scholar

Brombacher J., Reiche J., Dijksma R., Teuling A.J. (2020): Near-daily discharge estimation in high latitudes from Sentinel-1 and 2: A case study for the Icelandic Þjórsá river. Remote Sensing of Environment, 241: 111684.10.1016/j.rse.2020.111684 Search in Google Scholar

Caseldine C. & Hatton J. (1994): Interpretation of Holocene climatic change for the Eyjafördur area of northern Iceland from pollen-analytical data: comments and preliminary results. In: Stötter, J., Wilhelm, F. (eds). Environmental Change in Iceland. Münchener Geographische Abhandlungen, Reihe B, 12: 41-42. Search in Google Scholar

Deering D.W., Rouse J.W., Haas R.H. & Schell J.A. (1975): Measuring “Forage Production” of Grazing Units From Landsat MSS Data. Proceedings of the 10th International Symposium on Remote Sensing of Environment, II: 1169-1178. Search in Google Scholar

Eddudóttir S.D., Erlendsson E., Gísladóttir G. (2020): Landscape change in the Icelandic highland: A long-term record of the impacts of land use, climate and volcanism. Quaternary Science Reviews, 240: 106363.10.1016/j.quascirev.2020.106363 Search in Google Scholar

Foody G.M., Lucas R.M., Curran P.J., Honzak M. (1997): Mapping tropical forest fractional cover from coarse spatial resolution remote sensing imagery. Plant Ecology, 131: 143-154.10.1023/A:1009775619936 Search in Google Scholar

Gauger S., Kuhn G., Gohl K., Feigl T., Lemenkova P., Hillenbrand C. (2007): Swath-bathymetric mapping. Reports on Polar and Marine Research, 557: 38-45. Search in Google Scholar

Gísladóttir G. (2001): Ecological Disturbance and Soil Erosion on Grazing Land in Southwest Iceland, Land Degradation. Springer, 109-126. Search in Google Scholar

Greipsson S. (2012): Catastrophic soil erosion in Iceland: impact of long-term climate change, compounded natural disturbances and human driven landuse changes. Catena, 98: 41-54.10.1016/j.catena.2012.05.015 Search in Google Scholar

Gonçalves R.M., Saleem A., Queiroz H.A.A., Awange J.L. (2019): A fuzzy model integrating shoreline changes, NDVI and settlement influences for coastal zone human impact classification. Applied Geography, 113: 102093.10.1016/j.apgeog.2019.102093 Search in Google Scholar

He L., Zhang H., Zhang Y., Song X., Feng W., Kang G., Wang C., Guo T. (2016): Estimating canopy leaf nitrogen concentration in winter wheat based on multi-angular hyperspectral remote sensing. European Journal of Agronomy, 73: 170-185.10.1016/j.eja.2015.11.017 Search in Google Scholar

Huete A.R. (1988): A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3): 295-309.10.1016/0034-4257(88)90106-X Search in Google Scholar

Hüttich C., Gessner U., Herold M., Strohbach B.J., Schmidt M., Keil M., Dech S. (2009): On the suitability of MODIS time series metrics to map vegetation types in dry savanna ecosystems: a case study in the Kalahari of NE Namibia. Remote Sensing, 1(4): 620-643.10.3390/rs1040620 Search in Google Scholar

Ihuoma S.O. & Madramootoo C.A. (2019): Sensitivity of spectral vegetation indices for monitoring water stress in tomato plants. Computers and Electronics in Agriculture, 163: 104860.10.1016/j.compag.2019.104860 Search in Google Scholar

Jackson R.D. & Huete A.R. (1991): Interpreting vegetation indices. Preventive Veterinary Medicine, 11: 185-200.10.1016/S0167-5877(05)80004-2 Search in Google Scholar

Jensen J.R. (2005): Thematic map accuracy assessment. In Introductory Digital Image Processing–A Remote Sensing Perspective, (3rd ed) Keith, C.C., Prentice Hall Series in Geographic Information Science: Saddle River, NJ, USA, 495-515. Search in Google Scholar

Khan M.R., de Bie C.A.J.M., van Keulen H., Smaling E.M.A., Real R. (2010): Disaggregating and mapping crop statistics using hypertemporal remote sensing. International Journal of Applied Earth Observation and Geoinformation, 12: 36-46.10.1016/j.jag.2009.09.010 Search in Google Scholar

Kerkech M., Hafiane A., Canals R. (2018): Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images. Computers and Electronics in Agriculture, 155: 237-243.10.1016/j.compag.2018.10.006 Search in Google Scholar

Klaučo M., Gregorová B., Stankov U., Marković V., Lemenkova P. (2013a): Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Open Geosciences, 5(1): 28-42.10.2478/s13533-012-0120-0 Search in Google Scholar

Klaučo M., Gregorová B., Stankov U., Marković V., Lemenkova P. (2013b): Interpretation of Landscape Values, Typology and Quality Using Methods of Spatial Metrics for Ecological Planning. Environmental and Climate Technologies, October 14, 2013. Riga, Latvia. Search in Google Scholar

Klaučo M., Gregorová B., Stankov U., Marković V., Lemenkova P. (2014): Landscape metrics as indicator for ecological significance: assessment of Sitno Natura 2000 sites, Slovakia. Ecology and Environmental Protection, March 19-20, 2014. Minsk, Belarus, 85-90. Search in Google Scholar

Klaučo M., Gregorová B., Koleda P., Stankov U., Marković V., Lemenkova P. (2017): Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal, 2(16): 449-458.10.30638/eemj.2017.045 Search in Google Scholar

Lassalle G., Credoz A., Hédacq R., Bertoni G., Dubucq D., Fabre S., Elger A. (2019): Estimating persistent oil contamination in tropical region using vegetation indices and random forest regression. Ecotoxicology and Environmental Safety, 184: 109654.10.1016/j.ecoenv.2019.10965431522059 Search in Google Scholar

Lehnhart-Barnett H. & Waldron S. (2020): The influence of land cover, including Nootka lupin, on organic carbon exports in east Icelandic rivers. Catena, 184: 104245.10.1016/j.catena.2019.104245 Search in Google Scholar

Lemenkova P. (2011): Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece. M.Sc. Thesis. University of Twente, Faculty of Earth Observation and Geoinformation (ITC), Enschede, Netherlands. Search in Google Scholar

Lemenkova P. (2013): Monitoring Changes in Agricultural Landscapes of Central Europe, Hungary: Application of ILWIS GIS for Image Processing. 12th EAGE International Conference on Geoinformatics - Theoretical and Applied Aspects, Ukraine, Kiev, 13-16 May, 2013.10.3997/2214-4609.20142479 Search in Google Scholar

Lemenkova P. (2014): Detection of Vegetation Coverage in Urban Agglomeration of Brussels by NDVI Indicator Using eCognition Software and Remote Sensing Measurements. In: GIS and Remote Sensing. November 17-19, 2014, Tsaghkadzor, Armenia, 112-119. Search in Google Scholar

Lemenkova P. (2015a): Modelling Landscape Changes and Detecting Land Cover Types by Means of the Remote Sensing Data and ILWIS GIS. Information Technologies. Problems and Solutions, 2: 265-271. Search in Google Scholar

Lemenkova P. (2015b): Analysis of Landsat NDVI Time Series for Detecting Degradation of Vegetation. In: Geoecology and Sustainable Use of Mineral Resources. From Science to Practice, Belgorod, Russia, 11-13. Search in Google Scholar

Lemenkova P. (2016): Using GIS for Monitoring Lacustrine Ecosystem: a Case Study of Laguna de Gallocanta, Spain. Problems of the Environmental Landscape Planning, 237–240. Search in Google Scholar

Lemenkova P. (2019a): Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography, 45(2): 57-84.10.3846/gac.2019.3785 Search in Google Scholar

Lemenkova P. (2019b): GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica, 14(2): 39-48.10.21163/GT_2019.142.04 Search in Google Scholar

Lemenkova P. (2019c): AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis. GeoScience Engineering, 65(4): 1-22.10.35180/gse-2019-0020 Search in Google Scholar

Lemenkova P. (2019d): Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review, 51(4): 181-194.10.2478/pcr-2019-0015 Search in Google Scholar

Lemenkova P. (2020a): GMT Based Comparative Geomorphological Analysis of the Vityaz and Vanuatu Trenches, Fiji Basin. Geodetski List, 74(1): 19-39. Search in Google Scholar

Lemenkova P. (2020b): Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT. Bulletin of Geography. Physical Geography Series, 18(1): 41-60.10.2478/bgeo-2020-0004 Search in Google Scholar

Lemenkova P. (2020c): NOAA Marine Geophysical Data and a GEBCO Grid for the Topographical Analysis of Japanese Archipelago by Means of GRASS GIS and GDAL Library. Geomatics and Environmental Engineering, 14(4): 25-45.10.7494/geom.2020.14.4.25 Search in Google Scholar

Lemenkova P. (2020d): Using GMT for 2D and 3D Modeling of the Ryukyu Trench Topography, Pacific Ocean. Miscellanea Geographica, 25(3): 1-13.10.2478/mgrsd-2020-0038 Search in Google Scholar

Li C., Li H., Li J., Lei Y., Li C., Manevski K., Shen Y. (2019): Using NDVI percentiles to monitor real-time crop growth. Computers and Electronics in Agriculture, 162: 357-363.10.1016/j.compag.2019.04.026 Search in Google Scholar

Möllmann J., Buchholz M., Kölle W., Musshoff O. (2020): Do remotely-sensed vegetation health indices explain credit risk in agricultural microfinance? World Development, 127: 104771.10.1016/j.worlddev.2019.104771 Search in Google Scholar

Nguyen T.T.H., De Bie C.A.J.M., Ali A., Smaling E.M.A., Chu T.H. (2011): Mapping the irrigated rice cropping patterns of the Mekong delta, Vietnam, through hyper-temporal SPOT NDVI image analysis. International Journal of Remote Sensing, 33: 415-434.10.1080/01431161.2010.532826 Search in Google Scholar

Ólafsdóttir R. & Guðmundsson H. (2002): Holocene land degradation and climatic change in northeastern Iceland. Holocene, 12: 159-167.10.1191/0959683602hl531rp Search in Google Scholar

Perry C.Jr. & Lautenschlager L.F. (1984): Functional Equivalence of Spectral Vegetation Indices, Remote Sensing of Environment, 14(1-3): 169-182.10.1016/0034-4257(84)90013-0 Search in Google Scholar

Pradeep Kumar B., Raghu Babu K., Ramachandra M., Krupavathi C., Narayana Swamy B., Sreenivasulu Y., Rajasekhar M. (2020): Data on identification of desertified regions in Anantapur district, Southern India by NDVI approach using remote sensing and GIS. Data in Brief, 30: 105560.10.1016/j.dib.2020.105560 Search in Google Scholar

Qi J., Chehbouni A., Huete A.R., Kerr Y.H., Sorooshian S. (1994): A modified soil adjusted vegetation index. Remote Sensing of Environment, 48: 119-126.10.1016/0034-4257(94)90134-1 Search in Google Scholar

Raynolds M.K., Walker D.A., Maier H.A. (2006): NDVI patterns and phytomass distribution in the circumpolar Arctic. Remote Sensing of Environment, 102(3-4): 271-281.10.1016/j.rse.2006.02.016 Search in Google Scholar

Raynolds M.K., Comiso J.C., Walker D.A., Verbyla D. (2008): Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI. Remote Sensing of Environment, 112(4): 1884-1894.10.1016/j.rse.2007.09.008 Search in Google Scholar

Richardson A.J. & Wiegand C.L. (1977): Distinguishing Vegetation From Soil Background Information. Photogramnetric Engineering and Remote Sensing, 43(12): 1541-1552. Search in Google Scholar

Rouse J.W, Haas R.H., Scheel J.A. & Deering D.W. (1974): Monitoring Vegetation Systems in the Great Plains with ERTS. Proceedings, 3rd Earth Resource Technology Satellite (ERTS) Symposium, 1: 48-62. Search in Google Scholar

Schenke H.W. & Lemenkova P. (2008): Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten, 81: 16-21. Search in Google Scholar

Silleos, G.N., Alexandridis, T., Gitas, I.Z., Perakis, K. (2006): Vegetation indices: Advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto International, 21(4): 21-28.10.1080/10106040608542399 Search in Google Scholar

Suetova I.A., Ushakova L.A., Lemenkova P. (2005a): Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources, 4: 138-142. Search in Google Scholar

Suetova I.A., Ushakova L.A., Lemenkova P. (2005b): Geoecological Mapping of the Barents Sea Using GIS. In: International Cartographic Conference (ICC), La Coruna, Spain. Search in Google Scholar

Thiam A.K. (1997): Geographic Information Systems and Remote Sensing. Methods for Assessing and Monitoring Land Degradation in the Sahel: The Case of Southern Mauritania. PhD Thesis, Clark University, Worcester Massachusetts. Search in Google Scholar

Tinganelli L., Erlendsson E., Eddudóttir S.D., Gísladóttir G. (2018): Impacts of climate, tephra and land use upon Holocene landscape stability in Northwest Iceland. Geomorphology, 322: 117-131.10.1016/j.geomorph.2018.08.025 Search in Google Scholar

Zhang H., Ma J., Chen C. & Tian X. (2020): NDVI-Net: A fusion network for generating high-resolution normalized difference vegetation index in remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 168: 182-196.10.1016/j.isprsjprs.2020.08.010 Search in Google Scholar

eISSN:
2466-4774
Język:
Angielski