Otwarty dostęp

Role of Proline in Mitigating the Deleterious Effects of Heat Stress in Chillies


Zacytuj

Abewoy D. (2018): Review on impacts of climate change on vegetable production and its management practices. Advances in Crop Science and Technology, 6(01): 1-7. DOI: 10.4172/2329-8863.100033010.4172/2329-8863.1000330 Search in Google Scholar

Ahmed C.B., Magdich S., Rouina B., Sensoy S., Boukhris M., Abdullah F.B. (2011): Exogenous proline effects on water relations and ions contents in leaves and roots of young olive. Amino Acids, 40(2): 565-573.10.1007/s00726-010-0677-120617349 Search in Google Scholar

Ali Q., Ashraf M., Athar H.U.R. (2007): Exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. Pakistan Journal of Botany, 39(4): 1133-1144. Search in Google Scholar

Ashraf M.F.M.R. & Foolad M.R. (2007): Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2): 206-216.10.1016/j.envexpbot.2005.12.006 Search in Google Scholar

Ashraf M.P.J.C. & Harris P.J.C. (2004): Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1): 3-16.10.1016/j.plantsci.2003.10.024 Search in Google Scholar

Ashraf M., Saeed M.M., Qureshi M.J. (1994): Tolerance to high temperature in cotton (Gossypium hirsutum L.) at initial growth stages. Environmental and Experimental Botany, 34(3): 275-283. Search in Google Scholar

Bajaj S., Targolli J., Liu L.F., Ho T.H.D., Wu R. (1999): Transgenic approaches to increase dehydration-stress tolerance in plants. Molecular Breeding, 5(6): 493-503.10.1023/A:1009660413133 Search in Google Scholar

Berke T., Black L.L., Talekar N.S., Wang J.F., Gniffke P., Green S.K., Wang T.C., Morris R. (2005): Suggested cultural practices for chilli pepper. AVRDC pub, 05-620. Search in Google Scholar

Butt M., Ayyub C.M., Amjad M., Ahmad R. (2016): Proline application enhances growth of chilli by improving physiological and biochemical attributes under salt stress. Pakistan Journal of Agricultural Sciences, 53(1): 43-49.10.21162/PAKJAS/16.4623 Search in Google Scholar

Chaum S. & Kirdmanee C. (2010): Effect of glycine betaine on proline, water use, and photosynthetic efficiencies, and growth of rice seedlings under salt stress. Turkish Journal of Agriculture and Forestry, 34(6): 517-527. Search in Google Scholar

Crafts-Brandner S.J. & Salvucci M.E. (2000): Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proceedings of the National Academy of Sciences, 97(24): 13430-13435.10.1073/pnas.2304514972724111069297 Search in Google Scholar

Cui L., Li J., Fan Y., Xu S., Zhang Z. (2006): High temperature effects on photosynthesis, PSII functionality and antioxidant activity of two Festuca arundinacea cultivars with different heat susceptibility. Botanical Studies, 47(1): 61-69. Search in Google Scholar

Erickson A.N. & Markhart A.H. (2002): Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant, Cell & Environment, 25(1): 123-130.10.1046/j.0016-8025.2001.00807.x Search in Google Scholar

Gadallah M.A.A. (1999). Effects of proline and glycinebetaine on Vicia faba responses to salt stress. Biologia Plantarum, 42(2): 249-257. Search in Google Scholar

Ghai N., Kau, J., Jindal S.K., Dhaliwal M.S., & Pahwa K. (2016): Physiological and biochemical response to higher temperature stress in hot pepper (Capsicum annuum L.). Journal of Applied and Natural Science, 8(3): 1133-1137.10.31018/jans.v8i3.930 Search in Google Scholar

González-Zamora A., Sierra-Campos E., Luna-Ortega J.G., Pérez-Morales R., Ortiz J.C.R., García-Hernández J.L. (2013): Characterization of different capsicum varieties by evaluation of their capsaicinoids content by high performance liquid chromatography, determination of pungency and effect of high temperature. Molecules, 18(11): 13471-13486.10.3390/molecules181113471626980224184818 Search in Google Scholar

GoP (2017): Pakistan economic survey. Ministry of Finance, Economic Advisor’s Wing, Islamabad. Search in Google Scholar

Hayat S., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., Ahmad A. (2012): Role of proline under changing environments: a review. Plant Signaling & Behavior, 7(11): 1456-1466.10.4161/psb.21949 Search in Google Scholar

Heuer B. (1994): Osmoregulatory role of proline in water and saltstressed plants. In: M. Pessarakli (Ed.), Handbook of plant and crop stress Marcel Dekker, New York, pp. 363-381. Search in Google Scholar

Heuer B. (2003): Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Science, 165(4): 693-699.10.1016/S0168-9452(03)00222-X Search in Google Scholar

IPCC (2012): Managing the risks of extreme events and disasters to advance climate change adaptation. In special report of the inter-governmental panel on climate change. Cambridge university press. Search in Google Scholar

Itai C. & Paleg L.G. (1982): Responses of water-stressed Hordeum distichum L. and Cucumis sativus to proline and betaine. Plant Science Letters, 25(3): 329-335.10.1016/0304-4211(82)90163-8 Search in Google Scholar

Jain M., Mathur G., Koul S., Sarin N. (2001): Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Reports, 20(5): 463-468.10.1007/s002990100353 Search in Google Scholar

Lehmann S., Funck D., Szabados L., Rentsch D. (2010): Proline metabolism and transport in plant development. Amino Acids, 39(4): 949-962.10.1007/s00726-010-0525-320204435 Search in Google Scholar

Liu X. & Huang B. (2000): Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Science, 40(2): 503-510. Search in Google Scholar

Makela P., Munns R., Colmer T.D., Condon A.G., Peltonen-Sainio P. (1998): Effect of foliar applications of glycinebetaine on stomatal conductance, abscisic acid and solute concentrations in leaves of salt-or drought-stressed tomato. Functional Plant Biology, 25(6): 655-663.10.1071/PP98024 Search in Google Scholar

Mantri N., Patade V., Penna S., Ford R., Pang E. (2012): Abiotic stress responses in plants: present and future. In: Abiotic stress responses in plants, Springer, New York, NY, pp. 1-19.10.1007/978-1-4614-0634-1_1 Search in Google Scholar

Mattioli R., Costantino P., Trovato M. (2009): Proline accumulation in plants: not only stress. Plant Signaling & Behavior, 4(11): 1016-1018.10.4161/psb.4.11.9797281950720009553 Search in Google Scholar

Mukhtar I., Shahid M.A., Khan M.W., Balal R.M., Iqbal M.M., Naz T., Zubair M., Ali H.H. (2016): Improving salinity tolerance in chili by exogenous application of calcium and sulphur. Soil & Environment, 35(1): 56-64. Search in Google Scholar

Murmu K., Murmu S., Kundu C.K., Bera P.S. (2017): Exogenous proline and glycine betaine in plants under stress tolerance. International Journal of Current Microbiology and Applied Sciences, 6(9): 901-913.10.20546/ijcmas.2017.609.109 Search in Google Scholar

Muslu A. & Ergun N. (2013): Effects of copper and chromium and high temperature on growth, proline and protein content in wheat seedlings. Bangladesh Journal of Botany, 42(1): 105-112.10.3329/bjb.v42i1.15871 Search in Google Scholar

Nawaz K., Talat A., Iqra, Hussain K., Majeed A. (2010): Induction of salt tolerance in two cultivars of sorghum (Sorghum bicolor L.) by exogenous application of proline at seedling stage. World Applied Sciences Journal, 10(1): 93-99. Search in Google Scholar

Neto N.B.M., Custódio C.C, Gatti A.B., Priolli M.R., Cardoso V.J.M. (2004). Proline: use as an indicator of temperature stress in bean seeds. Crop Breeding and Applied Biotechnology, 4(3): 330-337. Search in Google Scholar

Nounjan N., Nghia P.T., Theerakulpisut P. (2012): Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. Journal of Plant Physiology, 169(6): 596-604.10.1016/j.jplph.2012.01.004 Search in Google Scholar

Prasad P.V.V., Pisipati S.R., Ristic Z., Bukovnik U., Fritz A.K. (2008): Impact of nighttime temperature on physiology and growth of spring wheat. Crop Science, 48(6): 2372-2380.10.2135/cropsci2007.12.0717 Search in Google Scholar

Rhodes D. & Hanson A.D. (1993): Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annual Review of Plant Biology, 44(1): 357-384.10.1146/annurev.pp.44.060193.002041 Search in Google Scholar

Ristic Z., Bukovnik U., Prasad P.V.V. (2007): Correlation between heat stabilization of thylakoid membranes and loss of chlorophyll in winter wheat under heat stress. Crop Science, 47(5): 2067-2073.10.2135/cropsci2006.10.0674 Search in Google Scholar

Sharma D.K., Andersen S.B., Ottosen C.O., Rosenqvist E. (2015): Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiologia Plantarum, 153(2): 284-298.10.1111/ppl.12245 Search in Google Scholar

Sood S., Sood R., Sagar V., Sharma K. (2009): Genetic variation and association analysis for fruit yield, agronomic and quality characters in bell pepper. International Journal of Vegetable Science, 15(3): 272–284.10.1080/19315260902875822 Search in Google Scholar

Steel R.G.D., Torrie J.H., Dickey D.A. (1997): Principles and Procedures of Statistics: A biometrical Approach. 3rd Edition, McGraw-Hill, New York. Search in Google Scholar

Sung D.Y., Kaplan F., Lee K.J., Guy C.L. (2003): Acquired tolerance to temperature extremes. Trends in Plant Science, 8(4): 179-87.10.1016/S1360-1385(03)00047-5 Search in Google Scholar

Sweeney P., Danneberger K., Wang D., McBride M. (2001): Root weight, nonstructural carbohydrate content, and shoot density of high density creeping bent grass cultivars. HortScience, 36(2): 368–370.10.21273/HORTSCI.36.2.368 Search in Google Scholar

Szabados L. & Savoure A. (2009): Proline: a multifunctional amino acid. Trends in Plant Science, 15(2): 89-97. Search in Google Scholar

Tarnizi A.H. & Marziah M. (1995): The influence of low temperature treatment on growth and proline accumulation in polyembryogenic cultures of oil palm (Elaeis guineensis J acq.). Elaeis, 7(2): 107-117. Search in Google Scholar

Urban J., Ingwers M., McGuire M.A., Teskey R.O. (2017): Stomatal conductance increases with rising temperature. Plant Signaling and Behavior, 12(8), e1356534. DOI: 10.1080/15592324.2017.135653410.1080/15592324.2017.1356534561615428786730 Search in Google Scholar

Usman M.G., Rafi M.Y., Ismail M.R., Malek M.A., Latif M.A. (2015): Expression of target gene Hsp70 and membrane stability determine heat tolerance in chili pepper. Journal of the American Society for Horticultural Science, 140(2): 144–150.10.21273/JASHS.140.2.144 Search in Google Scholar

Verbruggen N. & Hermans C. (2008): Proline accumulation in plants: a review. Amino Acids, 35(4): 753-759.10.1007/s00726-008-0061-618379856 Search in Google Scholar

Wahid A. & Ghazanfar A. (2006): Possible involvement of some secondary metabolites in salt tolerance of sugarcane. Journal of Plant Physiology, 163(7): 723-730.10.1016/j.jplph.2005.07.00716616583 Search in Google Scholar

Wang J.Q. & Cui H.W. (1996): Variation in free proline content of cucumber (Cucumis sativus L.) seedlings under low temperature stress. Rep. Cucurbit Genetics Cooperative, 19: 25–26. Search in Google Scholar

Zhou R., Yu X., Ottosen C.O., Rosenqvist E., Zhao L., Wang Y., Yu W., Zhao T., Wu Z. (2017): Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biology, 17: 24. DOI: 10.1186/s12870-017-0974-x10.1186/s12870-017-0974-x526429228122507 Search in Google Scholar

eISSN:
2466-4774
Język:
Angielski