Otwarty dostęp

The effect of freeze-dried Lactiplantibacillus plantarum I on the microbiological quality of queen scallop Aequipecten opercularis

, , , ,  oraz   
05 mar 2025

Zacytuj
Pobierz okładkę

Bunse, C., Lundin, D., Karlsson, C.M.G. (2016): Response of marine bacterioplankton pH homeostasis gene expression to elevated CO2. Nat Clim Chang 6, 483–487. Search in Google Scholar

Cao, R., Liu, Q., Chen, S., Yang, X., Li, L. (2015): Application of Lactic Acid Bacteria (LAB) in freshness keeping of tilapia fillets as sashimi. J Ocean Uni China 14, 675-680. Search in Google Scholar

Capela, P., Hay, T.K.C., Shah, N.P. (2006): Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Res Int 39(2), 203–211. Search in Google Scholar

Cavicchioli, R., Ripple, W.J., Timmis, K.N., Azam, F., Bakken, L.R., Baylis, M., Behrenfeld, M.J., Boetius, A., Boyd, P.W., Classen, A.T., Crowther, T.W., Danovaro, R., Foreman, C.M., Huisman, J., Hutchins, D.A., Jansson, J.K., Karl, D.M., Koskella, B., Mark Welch, D.B., Martiny, J.B.H., Moran, M.A., Orphan, V.J., Reay, D.S., Remais, J.V., Rich, V.I., Singh, B.K., Stein, L.Y., Stewart, FJ, Sullivan, M.B., van Oppen, M.J.H., Weaver, S.C, Webb, E.A., Webster, N.S. (2019): Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 17(9), 569-586. Search in Google Scholar

Chizhayeva, A., Amangeldi, A., Oleinikova, Y., Alybaeva, A., Sadanov, A. (2022): Lactic acid bacteria as probiotics in sustainable development of aquaculture. Aquat Living Resour 35, 10. Search in Google Scholar

Čanak, I., Kostelac, D., Jakopović, Ž., Markov, K., Frece, J. (2024): Lactic acid bacteria of marine origin as a tool for successful shellfish farming and adaptation to climate change conditions. Foods 13(7), 1042. Search in Google Scholar

Čanak, I., Kovačić, I., Žunec, A., Jakopović, Ž., Kostelac, D., Markov, K., Štifanić, M., Burić, P., Iveša, N., Frece, J. (2023): Study of the impact of Lactiplantibacillus plantarum I on the health status of queen scallop Aequipecten opercularis. Appl Sci, 13, 7723. Search in Google Scholar

Derunets, A.S., Selimzyanova, A.I., Rykov, S.V., Kuznetsov, A.E., Berezina, O.V. (2024): Strategies to enhance stress tolerance in lactic acid bacteria across diverse stress conditions. World J Microbiol Biotechnol 40(4), 126. Search in Google Scholar

G-Alegría, E., López, I., Ruiz, J.I., Sáenz, J., Fernández, E., Zarazaga, M., Dizy, M., Torres, C., Ruiz-Larrea, F. (2004): High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiol Lett, 230(1), 53–61. Search in Google Scholar

Govindaraj, K., Samayanpaulraj, V., Narayanadoss, V., Uthandakalaipandian, R. (2021): Isolation of lactic acid bacteria from intestine of freshwater fishes and elucidation of probiotic potential for aquaculture application. Probiotics Antimicrob Proteins 13(6), 1598-1610. Search in Google Scholar

Hutchins, D.A., Fu, F.X. (2017): Microorganisms and ocean global change. Nat Microbiol 2, 17508. Search in Google Scholar

Iacumin, L., Cappellari, G., Pellegrini, M., Basso, M., Comi, G. (2021): Analysis of the bioprotective potential of different lactic acid bacteria against Listeria monocytogenes in cold-smoked sea bass, a new product packaged under vacuum and stored at 6 ± 2 C. Front Microbiol 12, 796655. Search in Google Scholar

Loh, J.Y. (2017): The role of probiotics and their mechanisms of action: an aquaculture perspective. World Aquac 48, 19-23. Search in Google Scholar

Maulu, S., Hasimuna, O.J., Haambiya, L.H., Monde, C., Musuka, C.G., Makorwa, T.H., Munganga, B.P., Piri, K.J., Nsekanabo, J. D. (2021): Climate change effects on aquaculture production: sustainability implications, mitigation, and adaptations. Front Sustain Food Syst 5, 609097. Search in Google Scholar

Papadopoulou, E., de Evgrafov, M.C.R., Kalea, A., Tsapekos, P., Angelidaki, I. (2023): Adaptive laboratory evolution to hypersaline conditions of lactic acid bacteria isolated from seaweed. New Biotechnol 75, 21-30. Search in Google Scholar

Reddy, K.B.P.K., Awasthi, S.P., Madhu, A.N., Prapulla, S.G. (2009): Role of cryoprotectants on the viability and functional properties of probiotic lactic acid bacteria during freeze drying. Food Biotechnol, 23(3), 243–265. Search in Google Scholar

Riebesell, U., Gattuso, J.P. (2015): Lessons learned from ocean acidification research. Nat. Clim. Change 5, 12–14. Search in Google Scholar

Ringø, E., Doan, H. V., Lee, S., Song, S. K. (2020): Lactic acid bacteria in shellfish: possibilities and challenges. Rev Fish Sci Aquac 28(2), 139-169. Search in Google Scholar

Sanderson, C.E., Alexander, K.A. (2020): Unchartered waters: Climate change likely to intensify infectious disease outbreaks causing mass mortality events in marine mammals. Glob Change Biol 26(8), 4284-4301. Search in Google Scholar

Thorstad, E.B., Bliss, D., Breau, C., Damon-Randall, K., Sundt-Hansen, L. E., Hatfield, E. M., Horsburgh, G., Hansen, H., Maoiléidigh, N.O., Sheehan, T., Sutton, S. G. (2021): Atlantic salmon in a rapidly changing environment—Facing the challenges of reduced marine survival and climate change. Aquat Conserv Mar Freshw Ecosyst 31(9), 2654-2665. Search in Google Scholar

Wu, C., Huang, J., Zhou, R. (2017): Genomics of lactic acid bacteria: Current status and potential applications. Crit Rev Microbiol 43, 393–404. Search in Google Scholar

Yalçınkaya, S., Kılıç, G. B. (2019): Isolation, identification and determination of technological properties of the halophilic lactic acid bacteria isolated from table olives. J Food Sci Technol 56(4), 2027-2037. Search in Google Scholar

Zapaśnik, A., Sokołowska, B., Bryła, M. (2022): Role of lactic acid bacteria in food preservation and safety. Foods 11(9), 1283. Search in Google Scholar

Zgouridou, A., Tripidaki, E., Giantsis, I. A., Theodorou, J. A., Kalaitzidou, M., Raitsos, D. E., Lattos, A., Mavropoulou, A.M., Sofianos, S., Karagiannis, D., Chaligiannis, I., Anestis, A., Papadakis, N., Feidantsis, K., Mintza, D., Staikou, A., Michaelidis, B. (2022): The current situation and potential effects of climate change on the microbial load of marine bivalves of the Greek coastlines: An integrative review. Environ Microbiol 24(3), 1012-1034. Search in Google Scholar

Zhang, F., Zhou, K., Xie, F., Zhao, Q. (2022): Screening and identification of lactic acid bacteria with antimicrobial abilities for aquaculture pathogens in vitro. Arch Microbiol 204(12), 689. Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Genetics, Biotechnologia, Ekologia, Nauki biologiczne, inne