Zacytuj

1. Diabetes mellitus. WHO; 2010.Search in Google Scholar

2. Amin N, Doupis J. Diabetic foot disease: From the evaluation of the «foot at risk» to the novel diabetic ulcer treatment modalities. World J Diabetes. 2016;7(7):153-64.10.4239/wjd.v7.i7.153482468627076876Search in Google Scholar

3. Volmer-Thole M, Lobmann R. Neuropathy and diabetic foot syndrome. Int J Mol Sci. 2016;17(6):E917.10.3390/ijms17060917492645027294922Search in Google Scholar

4. Tatianenko LV, Bogdanov GN, Varfolomeev VN, Kotelnikova RA, Shaposhnikova GI, Smirnov LD. Structural-functional changes in biomembranes during complications of diabetes mellitus and their pharmacological correction. Vopr Med Khim. 2017;44(6):551-8.Search in Google Scholar

5. Zochodne DW. Diabetes mellitus and the peripheral nervous system: Manifestations and mechanisms. Muscle Nerve. 2007;6(2):144-66.10.1002/mus.2078517469109Search in Google Scholar

6. Jack M, Wright DE. The role of advanced glycation endproducts and glyoxalase I in diabetic peripheral sensory neuropathy. Transl Res. 2012;159(5):355-65.10.1016/j.trsl.2011.12.004332921822500508Search in Google Scholar

7. Grindel A, Guggenberger B, Eichberger L, Pöppelmeyer C, Gschaider M, Tosevska A, et al. Oxidative stress, DNA Damage and DNA repair in female patients with diabetes mellitus type 2. PLoS One. 2016;11(9):1-17.10.1371/journal.pone.0162082501260327598300Search in Google Scholar

8. Russell JW, Golovoy D, Vincent AM, Mahendru P, Olzmann JA, Mentzer A. High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J. 2002;16:1738-48.10.1096/fj.01-1027com12409316Search in Google Scholar

9. Mehra A, Ali C, Parcq J, Vivien D, Docagne F. The plasminogen activation system in neuroinflammation. BBA - Molecular Basis of Disease. 2016;1862(3):395-402.10.1016/j.bbadis.2015.10.01126493446Search in Google Scholar

10. Aisina RB, Muk hametova LI. Structure and function of plasminogen/plasmin system. Russ J Bioorg Chem. 2014;40:590-605.10.1134/S106816201406002825895360Search in Google Scholar

11. Singleton JR, Smith AG, Russell JW, Feldman EL. Microvascular complications of impaired glucose tolerance. Diabetes. 2003;52(12):2867-73.10.2337/diabetes.52.12.286714633845Search in Google Scholar

12. Taiana MM, Lombardi R, Porretta-Serapiglia C, Ciusani E, Oggioni N, Sassone J, et al. Neutralization of Sschwann cell-secreted VEGF is protective to in vitro and in vivo experimental diabetic neuropathy. Zhou R, editor. PLoS One. 2014;9(9):e108403.10.1371/journal.pone.0108403418245525268360Search in Google Scholar

13. Brewster WJ, Fernyhough P, Diemel LT, Mohiuddin L, Tomlinson DR. Diabetic neuropathy, nerve growth factor and other neurotrophic factors. Trends Neurosci. 1994;17(8):321-5.10.1016/0166-2236(94)90169-4Search in Google Scholar

14. Apfel SC, Schwartz S, Adornato BT, Freeman R, Biton V, Rendell M, et al. Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy: A randomized controlled trial. rhNGF Clinical Investigator Group. JAMA. 2000;284(17):2215-21.10.1001/jama.284.17.2215Search in Google Scholar

15. Chen S-Q, Cai Q, Shen Y-Y, Cai X-Y, Lei H-Y. Combined use of NGF/BDNF/bFGF promotes proliferation and differentiation of neural stem cells in vitro. Int J Dev Neurosci. 2014;38:74-8.10.1016/j.ijdevneu.2014.08.002Search in Google Scholar

16. Abe K, Saito H. Effects of basic fibroblast growth factor on central nervous system functions. Pharmacol Res. 2001:43(4):307-12.10.1006/phrs.2000.0794Search in Google Scholar

17. Katsuki H, Itsukaichi Y, Matsuki N. Distinct signaling pathways involved in multiple effects of basic fibroblast growth factor on cultured rat hippocampal neurons. Brain Res. 2000;885(2):240-50.10.1016/S0006-8993(00)02953-XSearch in Google Scholar

18. Grothe C, Nikkhah G. The role of basic fibroblast growth factor in peripheral nerve regeneration. Anat Embryol (Berl). 2001;204(3):171-7.10.1007/s00429010020511681796Search in Google Scholar

19. Fujimoto E, Mizoguchi A, Hanada K, Yajima M, Ide C. Basic fibroblast growth factor promotes extension of regenerating axons of peripheral nerve. In vivo experiments using a Schwann cell basal lamina tube model. J Neurocytol. 1997;26(8):511-28.10.1023/A:1015410023132Search in Google Scholar

20. Li X, Zhang J, Zhao W, Yang H, Yang H, Ma J, Qi Y, et al. Effect of Tongxinluo on nerve regeneration in mice with diabetic peripheral neuropathy. Cell Mol Biol (Noisy-le-grand). 2015;61(5):103-7.Search in Google Scholar

21. Li R, Ma J, Wu Y, Nangle M, Zou S, Li Y, et al. Dual delivery of NGF and bFGF coacervater ameliorates diabetic peripheral neuropathy via inhibiting schwann cells apoptosis. Int J Biol Sci. 2017:13(5):640-51.10.7150/ijbs.18636544118028539836Search in Google Scholar

22. Javed S, Petropoulos IN, Alam U, Malik RA. Treatment of painful diabetic neuropathy. Ther Adv Chronic Dis. 2015;6(1):15-28.10.1177/2040622314552071426961025553239Search in Google Scholar

23. Schreiber AK. Diabetic neuropathic pain: Physiopathology and treatment. World J Diabetes. 2015;6(3):432.10.4239/wjd.v6.i3.432439890025897354Search in Google Scholar

24. Elgayar SA, Eltony SA, Sayed AA, Abbas AY. Protective effect of vitamin B complex in diabetic peripheral neuropathy. Histopathological study. Eur J Anat. 2017;21(3):173-87.Search in Google Scholar

25. Kirichek LT. Pharmacology of vitamins. Int Med J. 2001;7(4):97-104.Search in Google Scholar

26. 26. Ang CD, Alviar MJ, Dans AL, Bautista-Velez GG, Villaruz-Sulit MV, Tan JJ, at al. Vitamin B for treating peripheral neuropathy. Cochrane Database Syst. Rev. 2008;16(3):CD004573.Search in Google Scholar

27. Zhang YF, Ning G. Mecobalamin. Expert Opin Investig Drugs. 2008;17(6):953-64.10.1517/13543784.17.6.953Search in Google Scholar

28. Roy RP, Ghosh K, Ghosh M, Acharyya A, Bhattacharya A, Pal M, Chakraborty S, Sengupta N. Study of Vitamin B12 deficiency and peripheral neuropathy in metformin-treated early Type 2 diabetes mellitus. Indian J Endocrinol Metab. 2016;20(5):631-7.10.4103/2230-8210.190542Search in Google Scholar

29. Head KA. Peripheral neuropathy: pathogenic mechanisms and alternative therapies. Altern Med Rev. 2006;11:294-329.Search in Google Scholar

30. Andrès E, Loukili NH, Noel E. Vitamin B12 (cobalamin) deficiency in elderly patients. CMAJ. 2004;171:251-9.10.1503/cmaj.1031155Search in Google Scholar

31. Liu KW, Dai LK, Jean W. Metformin-related vitamin B12 deficiency. Age Ageing. 2006;35:200-1.10.1093/ageing/afj042Search in Google Scholar

32. Ting RZ, Szeto CC, Chan MH, Ma KK, Chow KM. Risk factors of vitamin B(12) deficiency in patients receiving metformin. Arch Intern Med. 2006;166:1975-9.10.1001/archinte.166.18.1975Search in Google Scholar

33. Okada K, Tanaka H, Temporin K, Okamoto M, Kuroda Y, Moritomo H, et al. Methylcobalamin increases Erk1/2 and Akt activities through the methylation cycle and promotes nerve regeneration in a rat sciatic nerve injury model. Exp Neurol. 2010;222:191-203.10.1016/j.expneurol.2009.12.017Search in Google Scholar

34. Sun Y, Lai MS, Lu CJ. Effectiveness of vitamin B12 on diabetic neuropathy: systematic review of clinical controlled trials. Acta Neurol Taiwan. 2005;14:48-54.Search in Google Scholar

35. Jayabalan B, Low LL. Vitamin B supplementation for diabetic peripheral neuropathy. Singapore Med J. 2016;57(2): 5-9.10.11622/smedj.2016027Search in Google Scholar

36. Nozdrenko D, Beregovyi S, Nikitina N, Stepanova L, Beregova T, Ostapchenko L. The influence of complex drug cocarnit on the nerve conduction velocity in nerve tibialis of rats with diabetic polyneuropathy. Biomed Res. 2018;29(19):3629-34.Search in Google Scholar

37. Kotov SV, Isakova EV, Leidvoll VY, Belova YuA, Volchenkova TV, Borodin AV, et al. The efficacy of cocarnit in diabetic neuropathy. Zh Nevrol Psikhiatr Im S.S. Korsakova. 2018;118(1):37-42.10.17116/jnevro20181181137-42Search in Google Scholar

38. Smelt HJM, Pouwels S, Said M, Smulders JF. Neuropathy by folic acid supplementation in a patient with anaemia and an untreated cobalamin deficiency: a case report. Clin Obes. 2018;8(4):300-4.10.1111/cob.12254Search in Google Scholar

39. Gibson GE, Park LC, Sheu KF, Blass JP, Calingasan NY. The alpha-ketoglutarate dehydrogenase complex in neurodegeneration. Neurochem Int. 2000;36(2):97-112.10.1016/S0197-0186(99)00114-XSearch in Google Scholar

40. Hoffer A. Use of nicotinic acid and/or nicotinamide in high doses to treat schizophrenia. Can J Psychiatr Nurs. 1966;7(8):5-6.Search in Google Scholar

41. Belov VG, Parfenov IA, Zaplutanov VA. Features of psychopharmacotherapeutic correction of alcohol dependence in the elderly. Adv Gerontol. 2013;26(4):702-6.Search in Google Scholar

42. King AJ. The use of animal models in diabetes research. Br J Pharmacol. 2012;166(3):877-94.10.1111/j.1476-5381.2012.01911.x341741522352879Search in Google Scholar

43. Sarkisova DS, Perova YuL. Microscopic technique: Management. Moscow: Medicine. 1996;544.Search in Google Scholar

44. Crowther JR. The ELISA guidebook. Methods Mol Biol. 2000;149: 1-413.10.1385/1592590497Search in Google Scholar

45. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.10.1016/0003-2697(76)90527-3Search in Google Scholar

46. Heussen C. Dowdle E. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem. 1980;102:196-202.10.1016/0003-2697(80)90338-3Search in Google Scholar

47. Ostapchenko L, Savchuk O, Burlova-Vasilieva N. Enzyme electrophoresis m ethod in analysis of active components of haemostasis system. Adv Biosci Biotechnol. 2011; 2(1):20-6.10.4236/abb.2011.21004Search in Google Scholar

48. Harlow E. Lane D. Antibodies. Cold Spring Harbor Laboratory. New York; 1998: 726.Search in Google Scholar

49. Protein Electrophoresis Technical manual. Amersham Biosciences Inc.; 1999.Search in Google Scholar

50. Rebrova OYu. Statistical analysis of medical data. Application of application package STATISTICA. Moscow: Media Sph; 2002:312.Search in Google Scholar

51. Yang X-W, Liu F-Q, Guo J-J, Yao W-J, Li Q-Q, Liu T-H, et al. Antioxidation and anti-inflammatory activity of Tang Bi Kang in rats with diabetic peripheral neuropathy. BMC Complement Altern Med. 2015;15(1):66.10.1186/s12906-015-0600-0Search in Google Scholar

52. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813-20.10.1038/414813aSearch in Google Scholar

53. Yakobchuk SO, Ihefody AG, Kolotylo OB. Questions of the pathogenesis of diabetic neuropathy. Bukovinsky Medical Bulletin. 2012;16(63):142-5.Search in Google Scholar

54. Barlow GH, Summaria L, Robbins KC. Molecular weight studies on human plasminogen and plasmin at the microgram level. J Biol Chem. 1969;244(5):1138-41.10.1016/S0021-9258(18)91819-3Search in Google Scholar

55. Graiani G, Emanueli C, Desortes E, Linthout SV, Pinna A, Figueroa CD, et al. Nerve growth factor promotes reparative angiogenesis and inhibits endothelial apoptosis in cutaneous wounds of Type 1 diabetic mice. Diabetologia. 2004;47(6):1047-54.10.1007/s00125-004-1414-715164170Search in Google Scholar

56. Nozdrenko D, Berehovyi S, Nikitina N, Stepanova L,Beregova T, Ostapchenko L. The influence of complex drug cocarnit on the nerve conduction velocity in nerve tibialis of rats with diabetic polyneuropathy Biomed Res. 2018;29(19):3629-34.10.4066/biomedicalresearch.29-18-1055Search in Google Scholar

57. Beregova TV, Nozdrenko DM, Beregovyi SM, Nikitina NS, Falalyeyeva TM, Ostapchenkо LI. Dynamic properties of skeletal muscle contraction in rats with diabetes. UK: St George`s Healthcare NHS Trust. 2018;7:119-39.10.5772/intechopen.70600Search in Google Scholar

58. Malik RA. Pathology of human diabetic neuropathy. Clinical Neurology. 2004;249-59.10.1016/B978-0-444-53480-4.00016-325410227Search in Google Scholar

59. Yagihashi S. Pathology and pathogenetic mechanisms of diabetic neuropathy: correlation with clinical signs and symptoms. Diabetes Res Clin Pract. 2007;77(1): 184-89.10.1016/j.diabres.2007.01.054Search in Google Scholar

60. Pittenger G, Vinik A, Pittenger GL. Nerve growth factor and diabetic neuropathy. Exp Diab Res. 2003;4:71-85.10.1155/EDR.2003.271Search in Google Scholar

61. Takagi H, King GL, Ferrara N, Aiello LP. Hypoxia regulates vascular endothelial growth factor receptor KDR/Flk gene expression through adenosine A2 receptors in retinal capillary endothelial cells. Invest Ophthalmol Vis Sci. 1996;37(7):1311-21.Search in Google Scholar

62. Lindberger M, Schröder HD, Schultzberg M, Kristensson K, Persson A, Ostman J, et al. Nerve fibre studies in skin biopsies in peripheral neuropathies. I. Immunohistochemical analysis of neuropeptides in diabetes mellitus. J Neurol Sci. 1989;93(2-3):289-96.10.1016/0022-510X(89)90198-6Search in Google Scholar

63. Apfel SC, Arezzo JC, Brownlee M, Federoff H, Kessler JA. Nerve growth factor administration protects against experimental diabetic sensory neuropathy. Brain Res. 1994;634(1):7-12.10.1016/0006-8993(94)90252-6Search in Google Scholar

64. Hulse RP, Beazley-Long N, Ved N, Bestall SM, Riaz H, Singhal P, et al. Vascular endothelial growth factor-A 165 b prevents diabetic neuropathic pain and sensory neuronal degeneration. Clin Sci. 2015;129(8):741-56.10.1042/CS20150124Search in Google Scholar

65. Deguchi T, Hashiguchi T, Horinouchi S, Uto T, Oku H, Kimura K, et al. Serum VEGF increases in diabetic polyneuropathy, particularly in the neurologically active symptomatic stage. Diabet Med. 2009;26(3):247-52.10.1111/j.1464-5491.2009.02680.xSearch in Google Scholar

66. Imamura T, Engleka K, Zhan X, Tokita Y, Forough R, Roeder D, et al. Recovery of mitogenic activity of a growth factor mutant with a nuclear translocation sequence. Science.1990;249(4976):1567-70.10.1126/science.1699274Search in Google Scholar

67. Yang HT, Yan Z, Abraham JA, Terjung RL. VEGF - and bFGF-induced increase in collateral blood flow requires normal nitric oxide production. Am J Physiol Circ Physiol. 2001;280(3):H1097-104.10.1152/ajpheart.2001.280.3.H1097Search in Google Scholar

68. Shaw R, Cianchetti R, Pleasure D, Kreider B. Basic fibroblast growth factor prevents cAMP-induced apoptosis in cultured Schwann cells. J Neurosci Res. 1997;47(4):400-4.10.1002/(SICI)1097-4547(19970215)47:4<400::AID-JNR5>3.0.CO;2-ISearch in Google Scholar

69. Iwai-Kanai E, Hasegawa K, Fujita M, Araki M, Yanazume T, Adachi S, et al. Basic fibroblast growth factor protects cardiac myocytes from iNOS-mediated apoptosis. J Cell Physiol. 2002;190(1):54-62.10.1002/jcp.10036Search in Google Scholar

70. Boilly B, Vercoutter-Edouart AS, Hondermarck H, Nurcombe V, Le Bourhis X. FGF signals for cell proliferation and migration through different pathways. Cytokine Growth Factor Rev. 2000;11(4):295-302.10.1016/S1359-6101(00)00014-9Search in Google Scholar

71. Kawaguchi H, Kurokawa T, Hanada K, Tamura M, Ogata E, Matsumoto T. Stimulation of fracture repair by recombinant human basic fibroblast growth factor in normal and streptozotocin-diabetic rats. Endocrinology. 1994;135(2):774-81.10.1210/endo.135.2.80338268033826Search in Google Scholar

72. Nakamura T, Hanada K, Tamura M, Shibanushi T, Nigi H, Tagawa M, et al. Stimulation of endosteal bone formation by systemic injections of recombinant basic fibroblast growth factor in rats. Endocrinology. 1995;136(3):1276-84.10.1210/endo.136.3.78675827867582Search in Google Scholar

73. Nakae M, Kamiya H, Naruse K, Horio N, Ito Y, Mizubayashi R, et al. Effects of basic fibroblast growth factor on experimental diabetic neuropathy in rats. Diabetes. 2006;55(5):1470-7.10.2337/db05-116016644707Search in Google Scholar

74. Cameron NE, Cotter MA. Neurovascular dysfunction in diabetic rats. Potential contribution of autoxidation and free radicals examined using transition metal chelating agents. J Clin Invest. 1995;96(2):1159-63.10.1172/JCI1181041853077635953Search in Google Scholar

75. Nakamura J, Kato K, Hamada Y, Nakayama M, Chaya S, Nakashima E, et al. A protein kinase C-beta-selective inhibitor ameliorates neural dysfunction in streptozotocin-induced diabetic rats. Diabetes. 1999;48(10):2090-5.10.2337/diabetes.48.10.209010512378Search in Google Scholar

eISSN:
2300-6676
ISSN:
2084-980X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, other, Pharmacology, Toxicology, Pharmacy