Otwarty dostęp

Development of Higher Order Stiffened Shell Element (HOST9) for the Static Analysis of Stiffened Laminated Plates


Zacytuj

MUKHOPADHYAY, M. (1981). Stiffened plate plane stress elements for the analysis of ships’ structures. Computers and Structures, 13(4), 563–573. https://doi.org/10.1016/0045-7949(81)90052-3. Search in Google Scholar

STRICKLIN, J. A., HAISLER, W. E., TISDALE, P. R., & GUNDERSON, R. (1969). A rapidly converging triangular plate element. AIAA Journal, 7(1), 180–181. https://doi.org/10.2514/3.5068 Search in Google Scholar

ROSSOW, M. P., & IBRAHIMKHAIL, A. K. (1978). Constraint method analysis of stiffened plates. Computers and Structures, 8(1), 51–60. https://doi.org/10.1016/0045-7949(78)90159-1. Search in Google Scholar

VENKATESH, A., & RAO, K. P. (1982). A laminated anisotropic curved beam and shell stiffening finite element. Computers and Structures, 15(2), 197–201. https://doi.org/10.1016/0045-7949(82)90068-2. Search in Google Scholar

ALLMAN, D. J. (1984). A compatible triangular element including vertex rotations for plane elasticity analysis. Computers and Structures, 19(1–2), 1–8. https://doi.org/10.1016/0045-7949(84)90197-4 Search in Google Scholar

SINHA, G., SHEIKH, A. H., & MUKHOPADHYAY, M. (1992). A new finite element model for the analysis of arbitrary stiffened shells. Finite Elements in Analysis and Design, 12(3–4), 241–271. https://doi.org/10.1016/0168-874X(92)90036-C. Search in Google Scholar

BISWAL, K. C., & GHOSH, A. K. (1994). Finite element analysis for stiffened laminated plates using higher order shear deformation theory. Computers and Structures, 53(1), 161–171. https://doi.org/10.1016/0045-7949(94)90139-2. Search in Google Scholar

COOK, R. D. (1994). Four-node “flat” shell element: Drilling degrees of freedom, membrane-bending coupling, warped geometry, and behavior. Computers and Structures, 50(4), 549–555. https://doi.org/10.1016/0045-7949(94)90025-6. Search in Google Scholar

SINHA, G., & MUKHOPADHYAY, M. (1994). Finite element free vibration analysis of stiffened shells. In Journal of Sound and Vibration (Vol. 171, Issue 4, pp. 529–548). https://doi.org/10.1006/jsvi.1994.1138. Search in Google Scholar

KANT, T., & KHARE, R. K. (1994). Finite element thermal stress analysis of composite laminates using a higher-order theory. Journal of Thermal Stresses, 17(2), 229–255. https://doi.org/10.1080/01495739408946257. Search in Google Scholar

KANT, T., & KHARE, R. K. (1997). A higher-order facet quadrilateral composite shell element. International Journal for Numerical Methods in Engineering, 40(24), 4477–4499. https://doi.org/10.1002/(sici)1097-0207(19971230)40:24<4477::aid-nme229>3.3.co;2-v. Search in Google Scholar

SAMANTA, A., & MUKHOPADHYAY, M. (1999). Finite element large deflection static analysis of shallow and deep stiffened shells. Finite Elements in Analysis and Design, 33(3), 187–208. https://doi.org/10.1016/S0168-874X(99)00022-0. Search in Google Scholar

SADEK, E. A., & TAWFIK, S. A. (2000). Finite element model for the analysis of stiffened laminated plates. Computers and Structures, 75(4), 369–383. https://doi.org/10.1016/S0045-7949(99)00094-2. Search in Google Scholar

PRUSTY, B. G., & SATSANGI, S. K. (2001). Analysis of stiffened shell for ships and ocean structures by finite element method. Ocean Engineering, 28(6), 621–638. https://doi.org/10.1016/S0029-8018(00)00021-4. Search in Google Scholar

PRUSTY, B. G., & SATSANGI, S. K. (2001). Finite element transient dynamic analysis of laminated stiffened shells. Journal of Sound and Vibration, 248(2), 215–233. https://doi.org/10.1006/jsvi.2001.3678. Search in Google Scholar

SAMANTA, A., & MUKHOPADHYAY, M. (2004). Free vibration analysis of stiffened shells by the finite element technique. European Journal of Mechanics, A/Solids, 23(1), 159–179. https://doi.org/10.1016/j.euromechsol.2003.11.001. Search in Google Scholar

BHAR, A., PHOENIX, S. S., & SATSANGI, S. K. (2010). Finite element analysis of laminated composite stiffened plates using FSDT and HSDT: A comparative perspective. Composite Structures, 92(2), 312–321. https://doi.org/10.1016/j.compstruct.2009.08.002. Search in Google Scholar

PUNERA, D., & KANT, T. (2017). Free vibration of functionally graded open cylindrical shells based on several refined higher order displacement models. Thin-Walled Structures, 119(July), 707–726. https://doi.org/10.1016/j.tws.2017.07.016. Search in Google Scholar

VEKSTEIN, G. (2020). - Theory of elasticity. In Physics of Continuous Media (pp. 234–259). https://doi.org/10.1201/b16095-7. Search in Google Scholar

eISSN:
2199-6512
Język:
Angielski