Beloglazov, A., J. Abawajy, R. Buyya. Energy-Aware Resource Allocation Heuristics for Efficient Management of Data Centers for Cloud Computing. – Future Generation Computer Systems, Vol. 28, 2012, No 3, pp. 755-768.Search in Google Scholar
Priya, V., C. S. Kumar, R. Kannan. Resource Scheduling Algorithm with Load Balancing for Cloud Service Provisioning. – Applied Soft Computing, Vol. 76, 2019, pp. 416-424.Search in Google Scholar
Kunwar, V., N. Agarwal, A. Rana, J. Pandey. Load Balancing in Cloud – A Systematic Review. – Big Data Analytics, 2018, pp. 583-593.Search in Google Scholar
Rekha, P., M. Dakshayini. Dynamic Cost-Load Aware Service Broker Load Balancing in Virtualization Environment. – Procedia Computer Science, Vol. 132, 2018, pp. 744-751.Search in Google Scholar
Braun, T. D., H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen. A Comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems. – Journal of Parallel and Distributed Computing, Vol. 61, 2001, No 6, pp. 810-837.Search in Google Scholar
Duan, J., Y. Yang. A Load Balancing and Multi-Tenancy Oriented Data Center Virtualization Framework. – IEEE Transactions on Parallel and Distributed Systems, Vol. 28, 2017, No 8, pp. 2131-2144.Search in Google Scholar
Buyya, R., A. Beloglazov, J. Abawajy. Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges. ArXiv preprint arXiv: 1006.0308, 2010.Search in Google Scholar
Calheiros, R. N., R. Buyya, C. A. De Rose. A Heuristic for Mapping Virtual Machines and Links in Emulation Testbeds. – In: Proc. of IEEE International Conference on Parallel Processing, 2019, pp. 518-525.Search in Google Scholar
Cardosa, M., M. R. Korupolu, A. Singh. Shares and Utilities Based Power Consolidation in Virtualized Server Environments. – In: Proc. of IEEE International Symposium on Integrated Network Management, 2009, pp. 327-334.Search in Google Scholar
Chedid, W., C. Yu, B. Lee. Power Analysis and Optimization Techniques for Energy Efficient Computer Systems. – Advances in Computers, Vol. 63, 2005, pp. 129-164.Search in Google Scholar
Kephart, J. O., D. M. Chess. The Vision of Autonomic Computing. – Computer, Vol. 36, 2003, No 1, pp. 41-50.Search in Google Scholar
Kumar, D. Energy Efficient Resource Allocation for Cloud Computing. 2014.Search in Google Scholar
Ahmad, M. O., R. Z. Khan. Load Balancing Tools and Techniques in Cloud Computing: A Systematic Review. – Advances in Computer and Computational Sciences, 2018, pp. 181-195.Search in Google Scholar
Jing, S. Y., S. Ali, K. She, Y. Zhong. State-of-the-Art Research Study for Green Cloud Computing. – The Journal of Supercomputing, Vol. 65, 2013, No 1, pp. 445-468.Search in Google Scholar
Kang, Q. M., H. He, H. M. Song, R. Deng. Task Allocation for Maximizing Reliability of Distributed Computing Systems Using Honeybee Mating Optimization. – Journal of Systems and Software, Vol. 83, 2010, No 11, pp. 2165-2174.Search in Google Scholar
Chen, S. L., Y. Y. Chen, S. H. Kuo. CLB: A Novel Load Balancing Architecture and Algorithm for Cloud Services. – Computers & Electrical Engineering, Vol. 58, 2017, pp. 154-160.Search in Google Scholar
Shah, J. M., K. Kotecha, S. Pandya, D. Choksi, N. Joshi. Load Balancing in Cloud Computing: Methodological Survey on Different Types of Algorithm. – In: Proc. of International Conference on Trends in Electronics and Informatics, 2017, pp. 100-107.Search in Google Scholar
Mishra, S. K., M. A. Khan, B. Sahoo, D. Puthal, M. S. Obaidat, K. F. Hsiao. Time Efficient Dynamic Threshold-Based Load Balancing Technique for Cloud Computing. – In: Proc. of International Conference on Computer, Information and Telecommunication Systems, 2017, pp. 161-165.Search in Google Scholar
Lee, Y. C., A. Y. Zomaya. Energy Efficient Utilization of Resources in Cloud Computing Systems. – Journal of Supercomputing, Vol. 60, 2012, No 2, pp. 268-280.Search in Google Scholar
Liu, L., H. Wang, X. Liu, X. Jin, W. B. He, Q. B. Wang, Y. Chen. GreenCloud: A New Architecture for Green Data Center. – In: Proc. of 6th International Conference Industry Session on Autonomic Computing and Communications Industry Session, 2017, pp. 29-38.Search in Google Scholar
Lorpunmanee, S., M. N. Sap, A. H. Abdullah, C. Chompooinwai. An Ant Colony Optimization for Dynamic Job Scheduling in Grid Environment. – International Journal of Computer and Information Science and Engineering, Vol. 1, 2007, No 4, pp. 207-214.Search in Google Scholar
Kusic, D., J. O. Kephart, J. E. Hanson, N. Kandasamy, G. Jiang. Power and Performance Management of Virtualized Computing Environments via Lookahead Control. – Cluster Computing, Vol. 12, 2009, No 11, pp. 1-15.Search in Google Scholar
Pradhan, A., S. K. Bisoy, P. K. Mallick. Load Balancing in Cloud Computing: Survey. – In: Innovation in Electrical Power Engineering, Communication, and Computing Technology, 2020, pp. 99-111.Search in Google Scholar
Al-Joboury, I. M., E. H. Al-Hemiary. Virtualized Fog Network with Load Balancing for IoT Based Fog-to-Cloud. – JOIV: International Journal on Informatics Visualization, Vol. 4, 2020, No 3, pp. 123-126.Search in Google Scholar
Madni, S. H. H., M. S. Abd Latiff, S. I. M. Abdulhamid, J. Ali. Hybrid Gradient Descent Cuckoo Search (HGDCS) Algorithm for Resource Scheduling in IaaS Cloud Computing Environment. – Cluster Computing, Vol. 22, 2019, No 1, pp. 301-334.Search in Google Scholar
Srikantaiah, S., A. Kansal, F. Zhao. Energy Aware Consolidation for Cloud Computing. – In: Proc. of Workshop on Power Aware Computing and Systems at OSDI, USENIX HotPower’08, 2008.Search in Google Scholar
Liu, F., J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, D. Leaf. NIST Cloud Computing Reference Architecture. – NIST Special Publication, Vol. 500, 2011, No 2011, pp. 1-28.Search in Google Scholar
Gamal, M., R. Rizk, H. Mahdi, B. Elhady. Bio-Inspired Based Task Scheduling in Cloud Computing. – In: Machine Learning Paradigms: Theory and Application, Springer, 2019, pp. 289-308.Search in Google Scholar
George Amalarethinam, D., S. Kavitha. Rescheduling Enhanced Min-Min (REMM) Algorithm for Meta-Task Scheduling in Cloud Computing. – In: Proc. of International Conference on Intelligent Data Communication Technologies and Internet of Things, 2018, pp. 895-902.Search in Google Scholar
Alworafi, M. A., S. Mallappa. A Collaboration of Deadline and Budget Constraints for Task Scheduling in Cloud Computing. – Cluster Computing, Vol. 23, 2020, No 2, pp. 1073-1083.Search in Google Scholar
Gray, L., A. Kumar, H. Li. SPEC power Committee. Power and Performance Benchmark Methodology V2. – In: Standard Performance Evaluation Corporation (SPEC), 2014.Search in Google Scholar
Lawanya Shri, M., S. Subha, B. Balusamy. Energy-Aware Fruitfly Optimisation Algorithm for Load Balancing in Cloud Computing Environments. – International Journal of Intelligent Engineering and Systems, Vol. 10, 2017, No 1, pp. 75-85.Search in Google Scholar
Shojafar, M., M. Kardgar, A. A. R. Hosseinabadi, S. Shamshirband, A. Abraham. TETS: A Genetic-Based Scheduler in Cloud Computing to Decrease Energy and Makespan. – In: Proc. of International Conference on Hybrid Intelligent Systems, 2016, pp. 103-115.Search in Google Scholar
Polepally, V., K. Shahu Chatrapati. Dragonfly Optimization and Constraint Measure-Based Load Balancing in Cloud Computing. – Cluster Computing, Vol. 22, 2019, No 1, pp. 1099-1111.Search in Google Scholar
Sangaiah, A. K., A. A. R. Hosseinabadi, M. B. Shareh, S. Y. Bozorgi Rad, A. Zolfagharian, N. Chilamkurti. IoT Resource Allocation and Optimization Based on Heuristic Algorithm. – Sensors, Vol. 20, 2020, No 2, p. 539.Search in Google Scholar
Xue, S., Y. Zhang, X. Xu, G. Xing, H. Xiang, S. Ji. $$\varvec {Q} ET $$ QET: A QoS-Based Energy-Aware Task Scheduling Method in Cloud Environment. – Cluster Computing, Vol. 20, 2017, No 4, pp. 3199-3212.Search in Google Scholar
Farahabadi, A. B., A. Hosseinabadi. Present a New Hybrid Algorithm Scheduling Flexible Manufacturing System Consideration Cost Maintenance. – International Journal of Scientific & Engineering Research, Vol. 4, 2013, No 9, pp. 1870-1875.Search in Google Scholar
Home Prasanna Raju, Y., N. Devarakonda. Makespan Efficient Task Scheduling in Cloud Computing. – In: Emerging Technologies in Data Mining and Information Security, Springer, 2019, pp. 283-298.Search in Google Scholar
Wei, X., J. Fan, Z. Lu, K. Ding, R. Li, G. Zhang. Bio-Inspired Application Scheduling Algorithm for Mobile Cloud Computing. – In: Proc. of 4th International Conference on Emerging Intelligent Data and Web Technologies, 2013, pp. 690-695.Search in Google Scholar
Topcuoglu, H., S. Hariri, M. Y. Wu. Performance-Effective and Low-Complexity Task Scheduling for Heterogeneous Computing. – IEEE Transactions on Parallel and Distributed Systems, Vol. 13, 2002, No 3, pp. 260-274.Search in Google Scholar
Zhu, X., M. Hussain, X. Li. Energy-Efficient Independent Task Scheduling in Cloud Computing. – In: Proc. of International Conference on Human Centered Computing, 2018, pp. 428-439.Search in Google Scholar
Prasanna Kumar, K., K. Kousalya. Amelioration of Task Scheduling in Cloud Computing Using Crow Search Algorithm. – Neural Computing and Applications, Vol. 32, 2020, No 10, pp. 5901-5907.Search in Google Scholar
Srichandan, S., T. A. Kumar, S. Bibhudatta. Task Scheduling for Cloud Computing Using Multi-Objective Hybrid Bacteria Foraging Algorithm. – Future Computing and Informatics Journal, Vol. 3, 2018, No 2, pp. 210-230.Search in Google Scholar
Basu, S., M. Karuppiah, K. Selvakumar, K. C. Li, S. H. Islam, M. M. Hassan, M. Z. A. Bhuiyan. An Intelligent/Cognitive Model of Task Scheduling for IoT Applications in Cloud Computing Environment. – Future Generation Computer Systems, Vol. 88, 2018, pp. 254-261.Search in Google Scholar
Kashikolaei, S. M. G., A. A. R. Hosseinabadi, B. Saemi, M. B. Shareh, A. K. Sangaiah, G. B. Bian. An Enhancement of Task Scheduling in Cloud Computing Based on Imperialist Competitive Algorithm and Firefly Algorithm. – Journal of Supercomputing, Vol. 76, 2020, No 8, pp. 6302-6329.Search in Google Scholar