Zacytuj

1. Giles, M. B., I. Reguly. Trends in High-Performance Computing for Engineering Calculations. – Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (The Royal Society Publishing), Vol. 372, 2014, 20130319.10.1098/rsta.2013.031925024423 Search in Google Scholar

2. Dagum, L., R. Menon. OpenMP: An Industry Standard API for Shared-Memory Programming. – IEEE Computational Science and Engineering (IEEE), Vol. 5, 1998, pp. 46-55.10.1109/99.660313 Search in Google Scholar

3. Walker, D. W., J. J. Dongarra. MPI: A Standard Message Passing Interface. – Supercomputer (ASFRA BV), Vol. 12, 1996, pp. 56-68. Search in Google Scholar

4. Buyya, R., C. S. Yeo, S. Venugopal, J. Broberg, I. Brandic. Cloud Computing and Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility. – Future Generation Computer Systems (Elsevier), Vol. 25, 2009, pp. 599-616.10.1016/j.future.2008.12.001 Search in Google Scholar

5. Giunta, G., R. Montella, G. Agrillo, G. Coviello. A GPGPU Transparent Virtualization Component for High Performance Computing Clouds. – In: Proc. of European Conference on Parallel Processing, 2010, pp. 379-391.10.1007/978-3-642-15277-1_37 Search in Google Scholar

6. Abid, M. R. HPC (High-Performance the Computing) for Big Data on Cloud: Opportunities and Challenges. – International Journal of Computer Theory and Engineering (IACSIT Press), Vol. 8, 2016, 423.10.7763/IJCTE.2016.V8.1083 Search in Google Scholar

7. Zhang, J., X. Lu, D. K. Panda. Is Singularity-Based Container Technology Ready for Running MPI Applications on HPC Clouds? – In: Proc. of 10th International Conference on Utility and Cloud Computing, 2017, pp. 151-160.10.1145/3147213.3147231 Search in Google Scholar

8. Rosado, T., J. Bernardino. An Overview of Openstack Architecture– In: Proc. of 18th International Database Engineering & Applications Symposium, USA, New York, Association for Computing Machinery, 2014, pp. 366-367.10.1145/2628194.2628195 Search in Google Scholar

9. Abdelbaky, M., J. Diaz-Montes, M. Parashar, M. Unuvar, M. Steinder. Docker Containers across Multiple Clouds and Data Centers. – In: Proc. of IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC’15), 2015, pp. 368-371.10.1109/UCC.2015.58 Search in Google Scholar

10. Bernstein, D. Containers and Cloud: From LXC to Docker to Kubernetes. – IEEE Cloud Computing, Vol. 1, 2014, pp. 81-84.10.1109/MCC.2014.51 Search in Google Scholar

11. Serrano, N., G. Gallardo, J. Hernantes. Infrastructure as a Service and Cloud Technologies. – IEEE Software, Vol. 32, 2015, pp. 30-36.10.1109/MS.2015.43 Search in Google Scholar

12. Yoo, A. B., M. A. Jette, M. Grondona. SLURM: Simple Linux Utility for Resource Management. – In: Job Scheduling Strategies for Parallel Processing. Berlin, Heidelberg, Springer, 2003, pp. 44-60.10.1007/10968987_3 Search in Google Scholar

13. Colonnelli, I., B. Cantalupo, I. Merelli, M. Aldinucci. StreamFlow: Cross-Breeding Cloud with HPC. – IEEE Transactions on Emerging Topics in Computing, 2020, pp. 1-1. Search in Google Scholar

14. Reuther, A., et al. Scalable System Scheduling for HPC and Big Data. – Journal of Parallel and Distributed Computing (Elsevier BV), Vol. 111, January 2018, pp. 76-92.10.1016/j.jpdc.2017.06.009 Search in Google Scholar

15. Beltre, A. M., P. Saha, M. Govindaraju, A. Younge, R. E. Grant. Enabling HPC Workloads on Cloud Infrastructure Using Kubernetes Container Orchestration Mechanisms. – IEEE/ACM International Workshop on Containers and New Orchestration Paradigms for Isolated Environments in HPC (CANOPIE-HPC’19), IEEE, 2019.10.1109/CANOPIE-HPC49598.2019.00007 Search in Google Scholar

16. Zhou, N., et al. Container Orchestration on HPC Systems through Kubernetes. – Journal of Cloud Computing (Springer Science and Business Media LLC), Vol. 10, February 2021.10.1186/s13677-021-00231-z Search in Google Scholar

17. Gropp, W., E. Lusk, N. Doss, A. Skjellum. A High-Performance, Portable Implementation of the MPI Message Passing Interface Standard. – Parallel Computing (Elsevier BV), Vol. 22, September 1996, pp. 789-828.10.1016/0167-8191(96)00024-5 Search in Google Scholar

18. Gabriel, E., et al. Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation. – In: Recent Advances in Parallel Virtual Machine and Message Passing Interface. Berlin, Heidelberg, Springer, 2004, pp. 97-104.10.1007/978-3-540-30218-6_19 Search in Google Scholar

19. Gropp, W., E. Lusk. User’s Guide for MPICH, a Portable Implementation of MPI. User’s Guide for MPICH, a Portable Implementation of MPI. Citeseer, 1996.10.2172/378911 Search in Google Scholar

20. Staples, G. Torque Resource Manager. – In: Proc. of ACM/IEEE Conference on Supercomputing, 2006.10.1145/1188455.1188464 Search in Google Scholar

21. Merkel, D. Docker: Lightweight Linux Containers for Consistent Development and Deployment. – Linux J. (Belltown Media), 2014, March 2014. Search in Google Scholar

22. Kurtzer, G. M., V. Sochat, M. W. Bauer. Singularity: Scientific Containers for Mobility of Compute. – In: Attila Gursoy, Ed. PLOS ONE (Public Library of Science (PLoS)). Vol. 12. May 2017, e0177459.10.1371/journal.pone.0177459542667528494014 Search in Google Scholar

23. Martin, P. Control Plane Components. – Kubernetes: Preparing for the CKA and CKAD Certifications, Apress, Berkeley, CA, 2021, pp. 11-13.10.1007/978-1-4842-6494-2_2 Search in Google Scholar

24. Slurm vs. LSF vs. Kubernetes Scheduler: Which is Right for You? (Online). https://www.run.ai/guides/slurm/slurm-vs-lsf-vs-kubernetes-scheduler-which-is-right-for-you Search in Google Scholar

25. Astsatryan, H., et al. Strengthening Compute and Data Intensive Capacities of Armenia. – In: Proc. of 14th RoEduNet International Conference-Networking in Education and Research (RoEduNet NER), 2015, pp. 28-33.10.1109/RoEduNet.2015.7311823 Search in Google Scholar

eISSN:
1314-4081
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Computer Sciences, Information Technology