1. bookTom 20 (2020): Zeszyt 5 (December 2020)
    Special issue on Innovations in Intelligent Systems and Applications
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1314-4081
Pierwsze wydanie
13 Mar 2012
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Two Applications of Inter-Criteria Analysis with Belief Functions

Data publikacji: 13 Sep 2020
Tom & Zeszyt: Tom 20 (2020) - Zeszyt 5 (December 2020) - Special issue on Innovations in Intelligent Systems and Applications
Zakres stron: 38 - 59
Otrzymano: 04 Dec 2019
Przyjęty: 07 May 2020
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1314-4081
Pierwsze wydanie
13 Mar 2012
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

1. Barzilai, J., B. Golany. AHP Rank Reversal, Normalization and Aggregation Rules. – INFOR, Vol. 32, 1994, No 2, pp. 57-63.10.1080/03155986.1994.11732238 Search in Google Scholar

2. Pavlicic, D. Normalization Affects the Results of MADM Methods. – Yugoslav J. of Operations Research, Vol. 11, 2001, No 2, pp. 251-265. Search in Google Scholar

3. Dezert, J., D. Han, H. Yin. A New Belief Function Based Approach for Multi-Criteria Decision-Making Support. – In: Proc. of Information Fusion Conference, 2016. Search in Google Scholar

4. Saaty, T. The Analytic Hierarchy Process. McGraw-Hill, 1980.10.21236/ADA214804 Search in Google Scholar

5. Wang, X., E. Triantaphyllou. Ranking Irregularities When Evaluating Alternatives by Using Some ELECTRE Methods. – Omega, Vol. 36, 2008, No 1.10.1016/j.omega.2005.12.003 Search in Google Scholar

6. Hwang, C. L., K. Yoon. Multiple Attribute Decision Making. – In: Lecture Notes in Economics and Math. Syst. Vol. 186. Berlin, Springer-Verlag, 1981.10.1007/978-3-642-48318-9 Search in Google Scholar

7. Lai, Y. J., T. Y. Liu, C. L. Hwang. TOPSIS for MODM. – European Journal of Operational Research, Vol. 76, 1994, No 3, pp. 486-500.10.1016/0377-2217(94)90282-8 Search in Google Scholar

8. Dezert, J., D. Han, J.-M. Tacnet. Multi-Criteria Decision-Making with Imprecise Scores and BF-TOPSIS. – In: Proc. of Information Fusion Conference, Proc. of Fusion, 2017.10.23919/ICIF.2017.8009725 Search in Google Scholar

9. Atanassov, K., D. Mavrov, V. Atanassova. Intercriteria Decision Making. A New Approach for Multicriteria Decision Making, Based on Index Matrices and Intuitionistic Fuzzy Sets. – Issues in IFS and Generalized Nets, Vol. 11, 2014, pp. 1-8. Search in Google Scholar

10. Atanassov, K., V. Atanassova, G. Gluhchev. InterCriteria Analysis: Ideas and Problems. – Notes on IFS, Vol. 21, 2015, No 1, pp. 81-88. Search in Google Scholar

11. Atanassov, K., et al. An Approach to a Constructive Simplification of Multiagent Multicriteria Decision Making Problems via Intercriteria Analysis. – Compt. Rend. Acad. bulg. Sci., Vol. 70, 2017, No 8. Search in Google Scholar

12. Atanassov, K. On Intuitionistic Fuzzy Sets Theory. Springer, 2012.10.1007/978-3-642-29127-2 Search in Google Scholar

13. Todinova, S., et al. Blood Plasma Thermograms Dataset Analysis by Means of Inter Criteria and Correlation Analyses for the Case of Colorectal Cancer. – Int. J. of BIO Automation, Vol. 20, 2016, No 1, pp 115-124. Search in Google Scholar

14. Krumova, S., et al. InterCriteria Analysis of Calorimetric Data of Blood Serum Proteome. – In: Bioch. et Biophys. Acta, Gen. Subjects, 1861, 2017.10.1016/j.bbagen.2016.10.01227751955 Search in Google Scholar

15. Zaharieva, B., et al. InterCriteria Decision Making Approach for Behterev’s DISEASE ANALYSIS. – Int. J. of Bioautom, Vol. 22, 2018, No 2. Search in Google Scholar

16. Pencheva, T., et al. InterCriteria Analysis of Genetic Algorithm Parameters in Parameter Identification. – Notes on IFS, Vol. 21, 2015, No 2. Search in Google Scholar

17. Sotirov, S., et al. Application of the Intuitionistic Fuzzy InterCriteria Analysis Method to a Neural Network Preprocessing Procedure. – In: Proc. of 9th EUSFLAT, 2015, pp. 1559-1564.10.2991/ifsa-eusflat-15.2015.222 Search in Google Scholar

18. Roeva, O., et al. InterCriteria Analysis of a Model Parameters Identification Using Genetic Algorithm. – In: Proc. of Federated Conf. on Computer Science and Information Systems 5, 2015, pp. 501-506.10.15439/2015F223 Search in Google Scholar

19. Angelova, M., O. Roeva, T. Pencheva. InterCriteria Analysis of Crossover and Mutation Rates Relations in Simple Genetic Algorithm. – In: Proc. of Conf on Computer Sci. and Inf. Syst, Vol. 5, 2015, pp. 419-424.10.15439/2015F178 Search in Google Scholar

20. Roeva, O., S. Fidanova, M. Paprzycki. InterCriteria Analysis of ACO and GA Hybrid Algorithms. – Stud. Comput. Intell., Vol. 610, 2016, pp. 107-126.10.1007/978-3-319-21133-6_7 Search in Google Scholar

21. Roeva, O., et al. InterCriteria Analysis of ACO Performance for Workforce Planning Problem. – In: Studies in Comp. Intell. Vol. 795. Springer, 2019.10.1007/978-3-319-99648-6_4 Search in Google Scholar

22. Atanassova, V., et al., Discussion on the Threshold Values in the InterCriteria Decision Making Approach. – Notes on Intuitionistic Fuzzy Sets, Vol. 20, 2014 No 2, pp. 94-99. Search in Google Scholar

23. Doukovska, L., V. Atanassova. InterCriteria Analysis Approach in Radar Detection Threshold Analysis. – Notes on IFS, Vol. 21, 2015, No 4. Search in Google Scholar

24. Doukovska, L., et al. InterCriteria Analysis Applied to EU Micro, Small, Medium and Large Enterprises. – In Proc. of 5th Int. Symp. on BMSD, 2015. Search in Google Scholar

25. Bureva, V., et al. Application of the InterCriteria Decision Making Method to Bulgarian Universities Ranking. – In: Int. Workshop on IFSs, 2015. Search in Google Scholar

26. Bureva, V., E. Sotirova, H. Panayotov. The InterCriteria Decision Making Method to Bulgarian University Ranking System. – Annual of Informatics Section, Vol. 8, 2015-2016, pp. 54-70. Search in Google Scholar

27. Krawczak, M., et al. Application of the InterCriteria Decision Making Method to Universities Ranking. – Adv. in Intell. Syst. and Comp., Springer, Vol. 401, 2016, pp. 365-372.10.1007/978-3-319-26211-6_31 Search in Google Scholar

28. Shafer, G. A Mathematical Theory of Evidence. Princeton Press, 1976.10.1515/9780691214696 Search in Google Scholar

29. Dempster, A. Upper and Lower Probabilities Induced by a Multivalued Mapping. – Ann. of Math. Stat., Vol. 38, 1967, pp. 325-339.10.1214/aoms/1177698950 Search in Google Scholar

30. F. Smarandache, J. Dezert, Eds. Advances and Applications of DSmT for Information Fusion. American Research Press, Vol. 1-4, 2004-2015. http://www.onera.fr/staff/jean-dezert?page=2 Search in Google Scholar

31. Atanassov, K. Index Matrices: Towards an Augmented Matrix Calculus. – Springer, Cham, 2014.10.1007/978-3-319-10945-9 Search in Google Scholar

32. Atanassov, K., et al. Intercriteria Analysis over Normalized Data. – In: Proc. of 8th IEEE Int. Conf. on Intelligent Syst., 2016, pp. 564-566.10.1109/IS.2016.7737480 Search in Google Scholar

33. Ikonomov, N., P. Vassilev, O. Roeva. ICrAData Software for InterCriteria Analysis. – Int. J. BioAutomation, Vol. 22, 2018, No 2.10.7546/ijba.2018.22.1.1-10 Search in Google Scholar

34. Atanassova, V. Interpretation in the Intuitionistic Fuzzy Triangle of the Results Obtained by the InterCriteria Analysis. – In: Proc. of 16th World Congr. of IFSA, Atlantis Press, 2015.10.2991/ifsa-eusflat-15.2015.193 Search in Google Scholar

35. Atanassova, V., et al. Traversing and Ranking of Elements of an Intuitionistic Fuzzy Set in the Intuitionistic Fuzzy Interpretation Triangle. – Adv. in Intell. Syst. and Comp., Vol. 401, 2016, pp. 161-174.10.1007/978-3-319-26211-6_14 Search in Google Scholar

36. Han, D., J. Dezert, Y. Yang. New Distance Measures of Evidence Based on Belief Intervals. – Proc. of Belief, Oxford, 2014.10.1007/978-3-319-11191-9_47 Search in Google Scholar

37. Jousselme, A.-L., D. Grenier, E. Bossé. A New Distance between Two Bodies of Evidence. – Information Fusion, Vol. 2, 2001, No 2, pp. 91-101.10.1016/S1566-2535(01)00026-4 Search in Google Scholar

38. Dezert, J., A. Tchamova, D. Han, J.-M. Tacnet. Simplification of Multi-Criteria Decision-Making Using InterCriteria Analysis and Belief Functions. – In: Proc. of Fusion 2019 Int. Conf., 2019. Search in Google Scholar

39. Fidanova, S., J. Dezert, A. Tchamova. InterCriteria Analysis Based on Belief Functions for GPS Surveying Problems. – In: Proc. of Int. Symposium on INnovations in Intelligent SysTems and Applications (INISTA’19), 2019.10.1109/INISTA.2019.8778423 Search in Google Scholar

40. Stutzle, T., H. H. Hoos. MAX-MIN Ant System. – In: M. Dorigo, T. Stutzle, G. Di Caro, Eds. Future Generation Computer Systems, Vol. 16, 2000, pp. 889-914.10.1016/S0167-739X(00)00043-1 Search in Google Scholar

41. Dorigo, M., L. M. Gambardella. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. – IEEE Trans. Evol. Comput., Vol. 1, 1997, pp. 5-66.10.1109/4235.585892 Search in Google Scholar

42. Smarandache, F., J. Dezert, J.-M. Tacnet. Fusion of Sources of Evidence with Different Importances and Reliabilities. – In: Proc. of Fusion Conf., 2010.10.1109/ICIF.2010.5712071 Search in Google Scholar

43. Fidanova, S., V. Atanassova, O. Roeva. Ant Colony Optimization Application to GPS Surveying Problems: InterCriteria Analysis. – In: K. Atanassov et al., Eds. Uncertainty and Imprecision in Decision Making and Decision Support: Cross-Fertilization, New Models and Applications. IWIFSGN 2016. Advances in Intelligent Systems and Computing, Springer. Vol. 559. Cham, 2018. Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo