[1. Chung, F. R. K., J. A. Salehi, V. K. Wei. Optical Orthogonal Codes: Design, Analysis, and Applications. – IEEE Trans. Inform. Theory, Vol. 35, 1989, No 3, pp. 595-604.10.1109/18.30982]Search in Google Scholar
[2. Baicheva, T., S. Topalova. Optimal Conflict-Avoiding Codes for 3, 4 and 5 Active Users. – Problems of Information Transmission, Vol. 53, 2017, No 1, pp. 42-50.10.1134/S0032946017010033]Search in Google Scholar
[3. Baicheva, T., S. Topalova. Classification of Optimal Conflict-Avoiding Codes of Weights 6 and 7. – Electronic Notes in Discrete Mathematics, Vol. 57, March 2017, pp. 9-14.10.1016/j.endm.2017.02.003]Search in Google Scholar
[4. Fu, H., Y. Lin, M. Mishima. Optimal Conflict-Avoiding Codes of Even Length and Weight 3. – IEEE Trans. Inform. Theory, Vol. 56, 2010, No 11, pp. 5747-5756.10.1109/TIT.2010.2069270]Otwórz DOISearch in Google Scholar
[5. Fu, H., Y. Lo, K. Shum. Optimal Conflict-Avoiding Codes of Odd Length and Weight Three. – Des. Codes Cryptogr., Vol. 72, 2014, No 2, pp. 289-309.10.1007/s10623-012-9764-5]Search in Google Scholar
[6. Jimbo, M., M. Mishima, S. Janiszewski, A. Y. Teymorian, V. D. Tonchev. On Conflict-Avoiding Codes of Length n = 4m for Three Active Users. – IEEE Trans. Inform. Theory, Vol. 53, 2007, No 8, pp. 2732-2742.10.1109/TIT.2007.901233]Search in Google Scholar
[7. Levenshtein, V. I. Conflict-Avoiding Codes for Many Active Users. – In: Abstarcts of 14th Internat. Conference Problems of Theoretic Cybernetics, Penza, 2005, pp. 86-86 (in Russian).]Search in Google Scholar
[8. Levenshtein, V. I., V. D. Tonchev. Optimal Conflict-Avoiding Codes for Three Active Users. – In: Proc. of IEEE Internat. Symposium on Inform. Theory, Adelaide, 2005, pp. 535-537.10.1109/ISIT.2005.1523392]Search in Google Scholar
[9. Levenshtein, V. I. Conflict-Avoiding Codes and Cyclic Triple Systems. – Probl. of Inform. Transm., Vol. 43, 2007, No 3, pp. 199-212.10.1134/S0032946007030039]Search in Google Scholar
[10. Lin, Y., M. Mishima, J. Satoh, M. Jimbo. Optimal Equi-Difference Conflict-Avoiding Codes of Odd Length and Weight Three. – Finite Fields Appl., Vol. 26, 2014, pp. 49-68.10.1016/j.ffa.2013.11.001]Search in Google Scholar
[11. Ma, W., C. Zhao, D. Shen. New Optimal Constructions of Conflict-Avoiding Codes of Odd Length and Weight 3. – Des. Codes Cryptogr., Vol. 73, 2014, No 3, pp. 791-804.10.1007/s10623-013-9827-2]Search in Google Scholar
[12. Mishima, M., H. Fu, S. Uruno. Optimal Conflict-Avoiding Codes of Length n≡0(mod 16) and Weight 3. – Des. Codes Cryptogr., Vol. 52, 2009, No 3, pp. 275-291.10.1007/s10623-009-9282-2]Search in Google Scholar
[13. Momihara, K. Necessary and Sufficient Conditions for Tight Equi-Difference Conflict Avoiding Codes of Weight 3. – Des. Codes Cryptogr, Vol. 45, 2007, No 3, pp. 379-390.10.1007/s10623-007-9139-5]Search in Google Scholar
[14. Momihara, K., M. Müler, J. Saton, M. Jimbo. Constant Weight Conflict-Avoiding Codes. – SIAM J. Discr. Math., Vol. 21, 2007, No 4, pp. 959-979.10.1137/06067852X]Search in Google Scholar
[15. Shum, K. W., W. S. Wong. A Tight Asymptotic Bound on the Size of Constant-Weight Conflict-Avoiding Codes. – Des. Codes Cryptogr., Vol. 57, 2010, No 1, pp. 1-14.10.1007/s10623-009-9345-4]Search in Google Scholar
[16. Shum, K. W., W. S. Wong, C. S. Chen. A General Upper Bound on the Size of Constant-Weight Conflict Avoiding Codes. – IEEE Trans. Inform. Theory, Vol. 56, 2010, No 7, pp. 3265-3276.10.1109/TIT.2010.2048508]Otwórz DOISearch in Google Scholar
[17. Tonchev, V. D. Tables of Conflict-Avoiding Codes. http://www.math.mtu.edu/tonchev/CAC.html]Search in Google Scholar
[18. Wu, S. L., H. L. Fu. Optimal Tight Equi-Difference Conflict-Avoiding Codes of Length n = 2k ± 1 and Weight 3. – J. Comb. Des., Vol. 21, 2013, No 6, pp. 223-231.10.1002/jcd.21332]Search in Google Scholar