Otwarty dostęp

Curvature Dependent Electrostatic Field in the Deformable MEMS Device: Stability and Optimal Control


Zacytuj

1. AA.VV., The MEMS Handbook, Edited by Mohamed Gad-el-Hak. CRC Press, 2015.Search in Google Scholar

2. H. Nathanson, W. Newell, R. Wickstrom, and J. Lewis, The resonant gate transistor, IEEE Transations on Electron Devices, vol. 14, pp. 117–133, 1964.10.1109/T-ED.1967.15912Search in Google Scholar

3. J. Zhu, Development trends and perspectives of future sensors and mems/nems, Micromachines, vol. 11, no. 7, pp. 1–30, 2020.10.3390/mi11010007701928131861476Search in Google Scholar

4. H. Quakad, Electriostatic fringing-fields effects on the structural behavior of mems shallow arches, Microsystem Technologies, vol. 24, pp. 1391–1399, 2018.Search in Google Scholar

5. P. D. Barba, L. Fattorusso, and M. Versaci, Electrostatic field in terms of geometric curvature in membrane mems devices, Communications in Applied and Industrial Mathematics, vol. 8, no. 1, pp. 165–184, 2017.10.1515/caim-2017-0009Search in Google Scholar

6. A. Rahaman, A. Ishfaque, H. H. Jung, and B. Kim, Bio-inspired rectangular shaped piezoelectric mems directional microphone, Sensors, vol. 19, no. 1, pp. 88–96, 2019.10.1109/JSEN.2018.2873781Search in Google Scholar

7. M. Versaci, G. Angiulli, L. Fattorusso, and A. Jannelli, On the uniqueness of the solution for a semi-linear elliptic boundary value problem of the membrane mems device for reconstructing the membrane profile in absence of ghost solutions, International Journal of Non-Linear Mechanics, vol. 109, pp. 24–31, 2019.10.1016/j.ijnonlinmec.2018.10.014Search in Google Scholar

8. G. Angiulli, A. Jannelli, F. Morabito, and M. Versaci, Reconstructing the membrane detection of a 1d electrostatic-driven mems device by the shooting method: Convergence analysis and ghost solutions identi cation, Computational and Applied Mathematics, vol. 37, no. 4, pp. 4484–4498, 2018.Search in Google Scholar

9. V. Zega, A. Frang, and A. Guercilena, Analysis of frequency stability and thermoelastic effects for slotted tuning fork mems resonators, Sensors, vol. 18, no. 7, pp. 1–15, 2018.10.3390/s18072157606883629973566Search in Google Scholar

10. H. Javaheri, P. P. Ghanati, and S. Azizi, A case study on the numerical solution and reduced order model of mems, Sensing and Imaging, vol. 19, no. 3, 2018.10.1007/s11220-018-0189-8Search in Google Scholar

11. J. Pelesko and D.H.Bernestein, Modeling MEMS and NEMS. Chapman & Hall/CRC Press, 2003.10.1201/9781420035292Search in Google Scholar

12. V.V.Zozulya and A.Saez, A high-order theory of a thermoelastic beams and its application to the mems/nems analysis and simulations, Archive of Applied Mechanics, vol. 86, pp. 1255–1273, 2016.Search in Google Scholar

13. Y. Zhang and et al., Micro electrostatic energy harvester with both broad bandwidth and high normalized power density, Applied Energy, vol. 212, pp. 363–371, 2018.10.1016/j.apenergy.2017.12.053Search in Google Scholar

14. L. Velosa-Moncada and et al., Design of a novel mems microgripper with rotatory electrostatic comb-drive actuators for biomedical applications, Sensors, vol. 18, no. 15, pp. 1–16, 2018.10.3390/s18051664598268929789474Search in Google Scholar

15. P. D. Barba, T. Gotszalk, W. Majstrzyk, M. Mognaschi, K. Orlowska, and S. W. an A. Sierakowski, Optimal design of electromagnetically actuated mems cantilevers, Sensors, vol. 18, no. 8, pp. 25–33, 2018.10.3390/s18082533611179430072659Search in Google Scholar

16. P. D. Barba and S. Wiak, MEMS: Field Models and Optimal Design. Springer International Publishing, 2020.10.1007/978-3-030-21496-8Search in Google Scholar

17. R. de Oliveira Hansen and et al., Magnetic films for electromagnetic actuation in mems switches, Microsystem Technologies, vol. 24, pp. 1987–1994, 2018.Search in Google Scholar

18. A. Mohammadi and N. Ali, Effect of high electrostatic actuation on thermoelastic damping in thin rectangular microplate resonators, Journal of Theoretical and Applied Mechanics, vol. 53, no. 2, pp. 317–329, 2015.10.15632/jtam-pl.53.2.317Search in Google Scholar

19. M. Cauchi and et al., Analytical, numerical and experimental study of a horizontal electrothermal mems microgripper for the deformability characterisation of human red booold cells, Micromachines, vol. 9, no. 3, p. 108, 2018.10.3390/mi9030108618759530424042Search in Google Scholar

20. M. Vinyas and S. Kattimani, Investigation of the effect of batio3-cofe2o4 particle arrangement on the static response of magneto-electro-thermo-elastic plates, Composite Structures, vol. 185, pp. 51–64, 2018.10.1016/j.compstruct.2017.10.073Search in Google Scholar

21. S. Imai and T. Tsukioka, A magnetic mems actuator using a permanent magnet and magnet fluid enclosed in a cavity sandwiched by polymer diaphrams, Precision Engineering, vol. 38, no. 3, pp. 548–554, 2014.10.1016/j.precisioneng.2014.02.003Search in Google Scholar

22. J. Feng, C. Liu, W. Zhang, and S. Hao, Static and dynamic mechanical behaviors of electrostatic mems resonator with surface processing error, Micromachines, vol. 9, no. 34, pp. 1–19, 2018.10.3390/mi9010034618723830393310Search in Google Scholar

23. R. M. Joubari and R. Asghari, Analytical solution for nonlinear vibration of micro-electro-mechanical system (mems) by frequency-amplitude formulation method, The Journal of Mathematics and Computer Science, vol. 4, no. 3, pp. 371–379, 2012.10.22436/jmcs.04.03.10Search in Google Scholar

24. P. D. Barba, L. Fattorusso, and M. Versaci, A 2d non-linear second-order di erential model for electrostatic circular membrane mems devices: A result of existence and uniqueness, Mathematics, vol. 7, no. 1193, 2019.10.3390/math7121193Search in Google Scholar

25. M. Versaci and F. Morabito, Membrane Micro Electro-Mechanical Systems for Industrial Applications. Handbook of Research on Advanced Mechatronic Systems and Intelligent Robotics, 2019.10.4018/978-1-7998-0137-5.ch007Search in Google Scholar

26. M. Daeichin, M. Ozdogan, S. Twfighian, and R. Miles, Dynamic response of a tunable mems accelerometer based on repulsive force, Sensors and Actuators A: Physical, vol. 289, pp. 34–43, 2019.10.1016/j.sna.2019.02.007Search in Google Scholar

27. F. Morabito and M. Versaci, A fuzzy neural approach to localizing holes in conducting plates, IEEE Transavctions on Magnetics, vol. 37, pp. 3534–3537, 2001.Search in Google Scholar

28. G. Angiulli and M. Versaci, Neuro-fuzzy network for the design of circular and triangular equilateral microstrip antennas, Int. J. Infrared Millim. Waves, vol. 37, pp. 1513–1520, 2002.Search in Google Scholar

29. D. Cassani, M. d’O, and N. Ghoussoub, On a fourth order elliptic problem with a singular nonlinearity, Nonlinear Studies, vol. 9, pp. 189–209, 2009.10.1515/ans-2009-0109Search in Google Scholar

30. D. Cassani and A. Tarsia, Periodic solutions to nonlocal mems equations, Discrete and Continuous Dynamical Systems - Serie S, vol. 9, no. 3, pp. 631–642, 2016.10.3934/dcdss.2016017Search in Google Scholar

31. A. Katok and B. Hasselblatt, Introduction to Modern Theory of Dynamical Systems. Cambridge University Press, 2015.Search in Google Scholar

32. B. Sajadi, H. Goosen, and F. van Keulen, Electrostatic instability of micro-plates subjected to di erential pressure: A semi-analytical approach, International Journal of Mechanical Sciences, vol. 138–139, pp. 210–218, 2018.10.1016/j.ijmecsci.2018.02.007Search in Google Scholar

eISSN:
2038-0909
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics