Otwarty dostęp

The importance of biological fixation of atmospheric nitrogen by leguminous crops

  
04 kwi 2025

Zacytuj
Pobierz okładkę

Adamczyk B., Godlewski M., 2010. Various strategies of nitrogen acquisition by plants. Kosmos. Problemy Nauk Biologicznych, 59(1-2): 211-222. (in Polish + summary in English) Search in Google Scholar

Almaraz J.J., Mabood F., Zhou X., Souleimanov A., Smith D.L., 2011. Effect of Nod factor sprays on soybean growth Current Agronomy, 53/1, 2024 and producitvity under field conditions. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 61: 228-234. Search in Google Scholar

Bashan Y., de-Bashan L.E., Prabhu S.R., Hernandez J.P., 2014. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant and Soil, 378: 1-33. Search in Google Scholar

Borowiecki J., 2004. Nowe aspekty symbiotycznego wiązania azotu. Postępy Nauk Rolniczych, 2: 9-18. Search in Google Scholar

Bucher M., 2007. Functional biology of plant phosphate uptake at root and mycorhiza interfaces. New Phytologist, 173(1): 11-26. Search in Google Scholar

Chen C., McIver J., Yang Y., Bai Y., Schultz B., McIver A., 2006. Foliar application of lipochitooligosaccharides (Nod factors) to tomato (Lycopersicon esculentum) enhances flowering and fruit production. Canadian Journal of Plant Pathology, 87(2): 365-372. Search in Google Scholar

Cooper J.E., 2007. Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. Journal Applied Microbiology, 103(5): 1355-1365. Search in Google Scholar

D’Haeze W., Holsters M., 2002. Nod factors structures, responses and perception during initation of nodule development. Glycobiology, 12: 79-105. Search in Google Scholar

Denison R.F., Kiers E.T., 2011. Life histories of symbiotic rhizobia and mycorrhizal fungi. Current Biology, 21: 775-785. Search in Google Scholar

Graham P.H., 1992. Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Canadian Journal of Microbiology, 38: 475-484. Search in Google Scholar

Hadri A-E., Spaink H.P., Bisseling T., Brewin N.J., 1998. Diversity of root nodulation and egizobial infection processes. pp. 347-360. In: The Rhizobiaceae; eds: H.P. Spaink, A. Kondorosi, P.J.J. Hooykaas; Kluwer Academic Publishers. Search in Google Scholar

Halbleib C.M., Ludden P.W., 2000. Regulation of biological nitrogen fixation. The Journal of Nutrition, 130(5): 1081-1084. Search in Google Scholar

Hirsch A.M., 1992. Development biology of legume nodulation. New Phytologist, 122: 211-237. Search in Google Scholar

Howieson J.G., Robson A.D., Ewing M.A., 1993. External phosphate and calcium concentrations, and Ph, but not the products of rhizobial nodulation genes, affect the attachment of rhizobium meliloti to roots of annual medics. Soil Biology and Biochemistry, 25(5): 567-573. Search in Google Scholar

Ishizuka J., 1992. Trends in biological nitrogen fixation research and application. Plant and Soil, 141(1-2): 197-209. Search in Google Scholar

Jasińska Z., Kotecki A., 1997. Weight and chemical composition of post-harvest residues of some pea and faba bean cultivars. Zeszyty Problemowe Postępów Nauk Rolniczych, 446: 239-246. (in Polish + summary in English) Search in Google Scholar

Jensen E.S., Peoples M.B., Boddey R.M., Gresshoff P.M., Hauggaard-Nielsen H., Alves B.J.R., Morrison M.J., 2012. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. Agronomy for Sustainable Development, 32: 329-364. Search in Google Scholar

Kidaj D., Wielbo J., Skorupska A., 2012. Nod factors stimulate seed germination and promote growth and nodulation of pea and vetch under competitive conditions. Microbiological Research, 167: 144-150. Search in Google Scholar

Kotecki A., Kozak M., 2020. Część VIII. Rośliny bobowate grubonasienne (strączkowe), 95-121, Andrzej Kotecki, Uprawa roślin. Tom III, Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Wrocław. Search in Google Scholar

Libbenga K.R., Harkes P.A.A., 1973. Initial proliferation of cortical cells in the formation of root nodules in Pisum sativum L. Planta, 114: 17-28. Search in Google Scholar

Mancinelli R.L., 1996. The nature of nitrogen: an overview. Life Support & Biosphere Science, 3(1-2): 17-24. Search in Google Scholar

Martinez-Espinosa R.M., Cole J.A., Richardson D.J., Wart-mough N.J., 2011. Enzymology and ecology of the nitrogen cycle. Biochemical Society Transactions, 39: 175-178. Search in Google Scholar

Martyniuk S., 2012. Scientific and practical aspects of legumes symbiosis with root-nodule bacteria. Polish Journal of Agronomy, 9: 17-22. (in Polish + summary in English) Search in Google Scholar

Martyniuk S., 2019. Biological fixation of N2, symbiotic bacteria of legumes in Polish soils and estimation of their numbers. Polish Journal of Agronomy, 38: 52-65. (in Polish + summary in English) Search in Google Scholar

Martyniuk S., Kozieł M., Stalenga J., 2013. Effect of various strains of symbiotic bacteria on yields and nodulation of lu-pine and soybean. Journal of Research and Applications in Agricultural Engineering, 58(4): 67-70. (in Polish + summary in English) Search in Google Scholar

Matyka S., Burczyńska-Niedziałek A., Korol W., 1985. Skład chemiczny nasion krajowych odmian roślin strączkowych grubonasiennych. Biuletyn Informacji Przemysłu Paszowego, 1: 3-10. Search in Google Scholar

Mądrzak C.J., 1995. Molekularne mechanizmy symbiozy Rhizobiaceae z roślinami motylkowatymi. 232, Mądrzak C.J., Rozprawa habilitacyjna, Wydawnictwo Akademia Rolnicza w Poznaniu, Poznań. Search in Google Scholar

Mengel K., 1994. Symbiotic dinitrogen fixation – its dependence on plant nutrition and its ecophysiological impact. Zeitschrift für Pflanzenernährung und Bodenkunde, 157: 233-241. Search in Google Scholar

Newcomb W., Sippell D., Peterson R.L., 1979. The early morphogenesis of Glycine max and Pisum sativum root nodules. Canadian Journal of Botany, 57: 2603-2616. Search in Google Scholar

Oleńska E., Małek W.G., 2017. Brodawki korzeniowe jako organy symbiozy roślin bobowatych z ich diazotroficznymi mikrosymbiontami – rozwój, budowa i funkcjonowanie w warunkach fizjologicznych oraz stresu oksydacyjnego. Polskie Towarzystwo Botaniczne, Różnorodność biologiczna – od komórki do ekosystemu. Interdyscyplinarne i aplikacyjne znaczenie badań biologicznych, pp. 87-100. Search in Google Scholar

Ovtsyna A.O., Schultze M., Tikhonovich I.A., Spaink H.P., Kondorosi E., Kondorosi A., Staehelin C., 2000. Nod Factors of Rhizobium leguminosarum bv. viciae and Their Fucosylated Derivatives Stimulate a Nod Factor Cleaving Activity in Pea Roots and Are Hydrolyzed in Vitro by Plant Chitinases at Different Rates. Molecular Plant-Microbe Interactions, 13: 799-807. Search in Google Scholar

Paśmionka I., 2017. Microbiological transformations of soil nitrogen. Kosmos 66(2): 185-192. (in Polish + summary in English) Search in Google Scholar

Peoples M.B., Brockwell J., Herridge D.F., Rochester I.J., Alves B.J.R., Urquiaga S., Boddey R.M., Dakora F.D., Bhattarai S., Maskey S.L., Sampet C., Rerkasem B., Khan D.F., Hauggaard-Nielsen H., Jensen E.S., 2009. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis, 48: 1-17. Search in Google Scholar

Podleśna A., 1999. Oddziaływanie stresu potasowego na realizację potencjału plonotwórczego bobiku. Zeszyty Problemowe Postępów Nauk Rolniczych, 469: 257-263. Search in Google Scholar

Podleśny J., Wielbo J., Podleśna A., Kidaj D., 2013. Usefulness of nod preparation (LCOs) use to presowable dressing of pea seeds (Pisum sativum L.). Journal of Research and Applications in Agricultural Engineering, 58(4): 124-129. (in Polish + summary in English) Search in Google Scholar

Podleśny J., Wielbo J., Podleśna A., Kidaj D., 2014a. The pleiotropic effects of extract containing rhizobial Nod factors on pea growth and yield. Central European Journal of Biology, 9(4): 396-409. Search in Google Scholar

Podleśny J., Wielbo J., Podleśna A., Kidaj D., 2014b. The responses of two pea genotypes to Nod factors (LCOs) treatment. Journal of Food, Agriculture & Environment, 12(2): 554-558. Search in Google Scholar

Podleśny J., Wielbo J., Podleśna A., Perzyński A., 2017. Effect of molybdenum and lipochitooligosaccharides on yielding of pea. Przemysł Chemiczny, 96/8: 1805-1808. (in Polish + summary in English) Search in Google Scholar

Pudełko K., Narożna D., Króliczak J., Kidaj D., Wielbo J., Skorupska A., Mądrzak C., 2017. Nod Factors as potential stimulants of the lupine nodulation process. Zeszyty Naukowe Uniwersytetu Przyrodniczego we Wrocławiu, 626: 115-132. (in Polish + summary in English) Search in Google Scholar

Rubio L.M., Ludden P.W., 2008. Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annual Reviews of Micro-biology, 62(1): 93-111. Search in Google Scholar

Sawicka A., 1997. Czynniki ograniczające wiązanie azotu atmosferycznego u roślin motylkowatych i traw. Biuletyn Oceny Odmian, 29: 53-58. Search in Google Scholar

Seefeldt L.C., Brain M., Hoffman B.M., Dean D.R., 2009. Mechanism of nitrogen fixation by nitrogenase: the next stage. Annual Review of Biochemistry, 78: 701-722. Search in Google Scholar

Siczek A., Lipiec J., Wielbo J., Kidaj D., Szarlip P., 2014. Symbiotic activity of pea (Pisum sativum) after application of Nod Factors under field conditions. International Journal of Molecular Sciences, 15: 7344-7351. Search in Google Scholar

Siczek A., Wielbo J., Lipiec J., Kalembasa S., Kalembasa D., Kidaj D., Szarlip P., 2020. Nod factors improve the nitrogen content and rhizobial diversity of faba bean and alter soil dehydrogenase, protease, and acid phosphomonoesterase activities. International Agrophysics, 34: 9-15. Search in Google Scholar

Siegl A., Afjehi-Sadat L., Wienkoop S., 2024. Systemic long-distance sulfur transport and its role in symbiotic root nodule protein turnover. Journal of Plant Physiology, 297: 154260. Search in Google Scholar

Skorupska A., Wielbo J., Kidaj D., Marek-Kozaczuk M., 2010. Enhancing Rhizobium-legume symbiosis using signaling factors, 27-54, Khan M.S, Musarrat J., Zaidi A. Microbes for Legume Improvement, Springer-Verlag, Vienna. Search in Google Scholar

Smith S., Habib A., Kang Y., Leggett M., Diaz-Zorita M., 2015. LCO applications provide improved responses with legumes and nonlegumes. Biological Nitrogen Fixation, 2: 1077-1086. Search in Google Scholar

Smytkiewicz K., Podleśny J., Wielbo J., Podleśna A., 2021. The Effect of a Preparation Containing Rhizobial Nod Factors on Pea Morphological Traits and Physiology. Agronomy, 11: 1457. Search in Google Scholar

Souleimanov A., Prithiviraj B., Smith D.L., 2002. The major Nod factor of Bradyrhizobium japonicum promotes early growth of soybean and corn. Journal of Experimental Botany, 53: 1929-1934. Search in Google Scholar

Stasiak G., Mazur A., Koper P., Żebracki K., Skorupska A., 2016. Symbiosis of rhizobia with legume plants (Fabaceae). Postępy Mikrobiologii, 55(3): 289-299. (in Polish + summary in English) Search in Google Scholar

Streeter J.G., 1994. Failure of inoculant rhizobia to overcome the dominance of indigenous strains for nodule formation. Canadian Journal of Microbiology, 40: 513-522. Search in Google Scholar

Strzelec A., 1988a. Symbiotyczne wiązanie wolnego azotu. Cz. I. Znaczenie bakterii symbiotycznych, ich występowanie w gle-bach i szczepionki RHIZOBIUM dla roślin motylkowatych. Postępy Nauk Rolniczych, 4(88): 17-30. Search in Google Scholar

Strzelec A., 1988b. Symbiotyczne wiązanie wolnego azotu. Cz. II. Wpływ właściwości biotycznych i odczynu gleb na zdolność konkurencyjną szczepów RHIZOBIUM i ich symbiozę z roślinnym gospodarzem. Postępy Nauk Rolniczych, 5-6(35): 19-28. Search in Google Scholar

Sujkowska M., 2009. The infection process during legume-Rhizobium symbiosis. Wiadomości Botaniczne 53(1/2): 35-53. (in Polish + summary in English) Search in Google Scholar

Szpunar-Krok E., Pawlak R., 2023. The importance of nutrients for legumes – macroelements. Agronomy Science, 78(1): 135-151. (in Polish + summary in English) Search in Google Scholar

Thies J.E., Singleton P.W., Bohlool B.B., 1991. Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field-grown legumes. Applied and Environmental Microbiology, 57: 19-28. Search in Google Scholar

Trawczyński C., 2013. Assessment of mineral nitrogen content in the soil after harvest of potato tubers. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, 267: 87-96. (in Polish + summary in English) Search in Google Scholar

Vance C.P., Boylan K.L.M., Stade S., 1987. Host plant determinants of legume nodule function: similarities to plant disease situations. pp. 271-287. In: Molecular Determinants of Plant Diseases; Nishimure S.; Japan Scientific Societies Press, Tokyo/Springer-Verlag, Berlin. Search in Google Scholar

Wysokiński A., Faligowska A., Kalembasa D., 2014. The amount of biologically reduced nitrogen by yellow lupine (Lupinus luteus L.) – Preliminary results. Fragmenta Agronomica, 31(1): 121-128. (in Polish + summary in English) Search in Google Scholar

Zahran H.H., 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in arid climate. Microbiology and Molecular Biology Reviews, 63(4): 968-989. Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
1 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Nauka o roślinach, Ekologia