Otwarty dostęp

Dendrobium, survey on a natural medicine with multidimensional uses and pharmacological characteristics

,  oraz   
01 mar 2025

Zacytuj
Pobierz okładkę

Athipornchai A., Jullapo N., 2018. Tyrosinase inhibitory and antioxidant activities of Orchid (Dendrobium spp.). South African Journal of Botany, 119: 188-192, https://doi.org/10.1016/j.sajb.2018.09.003. Search in Google Scholar

Cakova V., Bonte F., Lobstein A., 2017. Dendrobium: sources of active ingredients to treat age-related pathologies. Aging and Disease, 8: 827-849, doi: 10.14336/AD.2017.0214. Search in Google Scholar

Chaotham C., Pongrakhananon V., Sritularak B., Chanvorachote P., 2014. Bibenzyl, from Dendrobium ellipsophyllum inhibits epithelial-to-mesenchymal transition and sensitizes lung cancer cells to anoikis. Anticancer Research, 34: 1931-1938. Search in Google Scholar

Chaves S.K., Feitosa C.M., da S. Araújo L., 2016. Alkaloids pharmacological activities-prospects for the development of phytopharmaceuticals for neurodegenerative diseases. Current Pharmaceutical Biotechnology, 17: 629-635, doi: 10.217 4/138920101707160503201541. Search in Google Scholar

Chen L., Liu X., Wang H., et al., 2017. Gastrodin attenuates pentylenetetrazole-induced seizures by modulating the mitogen-activated protein kinase-associated inflammatory responses in mice. Neuroscience Bulletin, 33(3): 264-272, https://doi.org/10.1007/s12264-016-0084-z. Search in Google Scholar

Chua R.W., Song K.P., Ting A.S.Y., 2022. Antimicrobial activities and phytochemical screening of endophytic fungi isolated from Cymbidium and Dendrobium orchids. South African Journal of Botany, 151(Part A): 909-918, https://doi.org/10.1016/j.sajb.2022.11.015. Search in Google Scholar

Cui H., Shahrajabian M.H., Kuang Y., Zhang H.Y., Sun W., 2023. Heterologous expression and function of cholesterol oxidase: A review. Protein and Peptide Letters, 30(7): 531-540, https://doi.org/10.2174/0929866530666230525162445. Search in Google Scholar

De Natale A., Pollio A., De Marco A., Luongo G., Di Fabio G., Zarrelli A., 2020. Phenanthrene dimers: promising source of biologically active molecules. Current Topics in Medicinal Chemistry, 22: 939-956. Search in Google Scholar

Fan Y., He X., Zhou S., Luo A., He T., Chun Z., 2009. Composition analysis and antioxidant activity of polysaccharide from Dendrobium denneanum. International Journal of Biological Macromolecules, 45(2): 169-173, https://doi.org/10.1016/j.ijbiomac.2009.04.019. Search in Google Scholar

Fan Y., Yu Q., Wang G., Tan J., Liu S., Pu S., Chen W., Xie P., Zhang Y., Zhang J., Liao Y., Luo A., 2020. Effects of non-thermal plasma treatment on the polysaccharide from Dendrobium nobile Lindl. and its immune activities in vitro. International Journal of Biological Macromolecules, 153: 942-950, https://doi.org/10.1016/j.ijbiomac.2019.10.260. Search in Google Scholar

Fang H., Hu X., Wang M., Wan W., Yang Q., Sun X., Gu Q., Gao X., Wang Z., Gu L., Chen C.-Y.O., Wei X., 2015. Anti-osmotic and antioxidant activities of gigantol from Dendrobium auranticacum var. denneanum against cataractogenesis in galactosemic rats. Journal of Ethnopharmacology, 172: 238-246, https://doi.org/10.1016/j.jep.2015.06.034. Search in Google Scholar

Fu X., Chen S., Xian S., Wu Q., Shi J., Zhou S., 2023. Dendrobium and its active ingredients: Emerging role in liver protection. Biomedicine and Pharmacotherapy, 157: 114043, https://doi.org/10.1016/j.biopha.2022.114043. Search in Google Scholar

Hu J.M., Chen J.J., Yu, H., et al., 2008. Two novel bibenzyls from Dendrobium trigonopus. Journal of Asian Natural Products Research, 10(7): 647-651, https://doi.org/10.1080/10286020802133605. Search in Google Scholar

Hu Y., Yang H., Ding X., Liu J., Wang X., Hu L., Liu M., Zhang C., 2020. Anti-inflammatory octahydroindolizine alkaloid enantiomers from Dendrobium crepidatum. Bio-organic Chemistry, 100: 103809, https://doi.org/10.1016/j.bioorg.2020.103809. Search in Google Scholar

Huang K., Li Y., Tao S., Wei G., Huang Y., Chen D., Wu C., 2016. Purification, characterization and biological activity of polysaccharides from Dendrobium officinale. Molecules, 21: 701, https://doi.org/10.3390/molecules21060701. Search in Google Scholar

Huang S., Wu Q., Liu H., Ling H., He Y., Wang C., Wang Z., Lu Y., Lu Y., 2019. Alkaloids of Dendrobium nobile Lindl altered hepatic lipid homeostasis via regulation of bile acids. Journal of Ethnopharmacology, 241: 111976, doi: 10.1016/j. jep.2019.111976. Search in Google Scholar

Huang S., Chen F., Chen H., Huang G., 2020. Modification and application of polysaccharide from traditional Chinese medicine such as Dendrobium officinale. International Journal of Biological Macromolecules, 157: 385-393, https://doi.org/10.1016/j.ijbiomac.2020.04.141. Search in Google Scholar

Hwang J.S., Lee S.A., Hong S.S., Han X.H., Lee C., Kang S.J., Lee D., Kim Y., Hong J.T., Lee M.K., Hwang B.Y., 2010. Phenanthrenes from Dendrobium nobile and their inhibition of the LPS-induced production of nitric oxide in macrophage RAW 264.7 cells. Bioorganic and Medicinal Chemistry Letters, 20: 3785-3787. Search in Google Scholar

Jiang N., Fan L.X., Yang Y.J., et al., 2017. Antidepressant effects of the extract of Dendrobium nobile Lindl on chronic unpredictable mild stress-induced depressive mice. Acta Physiologica Sinica, 69(2): 159-166, https://doi.org/10.13294/j.aps.2017.0006. Search in Google Scholar

Jiaranaikulwanitch J., Yooin W., Chutiwitoonchai N., Thitikornpong W., Sritularak B., Rojsitthisak P., Vajragupta O., 2020. Discovery of natural lead compound from Dendrobium sp. against SARS-CoV-2 infection. Pharmaceuticals (Basel), 15(5):620, https://doi.org/10.3390/ph15050620. Search in Google Scholar

Kesh S., Kannan R.R., Balakrishnan A., 2021. Naringenin alleviates 6-hydroxydopamine induced Parkinsonism in SHSY5Y cells and zebrafish model. Comparative Biochemistry and Physiology C Toxicology and Pharmacology, 239: 108893, https://doi.org/10.1016/j.cbpc.2020.108893. Search in Google Scholar

Kim J.H., Oh S.Y., Han S.B., Uddin G.M., Kim C.Y., Lee J.K., 2015. Anti-inflammatory effects of Dendrobium nobile derived phenanthrenes in LPS-stimulated murine macrophages. Archives of Pharmacal Research, 38: 1117-1126. Search in Google Scholar

Kim S., Jo K., Byun BS., Han S.H., Yu K.-W., Suh H.J., Hong K.-B., 2020. Chemical and biological properties of puffed Dendrobium officinale extracts: Evaluation of antioxidant and anti-fatigue activities. Journal of Functional Foods, 73: 104144, https://doi.org/10.1016/j.jff.2020.104144. Search in Google Scholar

Klongkumnuankarn P., Busaranon K., Chanvorachote P., Sritularak B., Jongbunprasert V., Likhitwitayawuid K., 2015. Cytotoxic and antimigratory activities of phenolic compounds from dendrobium brymerianum. Evidence Based Complementary and Alternative Medicine, 2015: 350410. Search in Google Scholar

Kongkatitham V., Muangnoi C., Kyokong N., Thaweesest W., Lickitwitayawuid K., Rojsitthisak P., Sritularak B., 2018. Anti-oxidant and anti-inflammatory effects of new bibenzyl derivaties from Dendrobium parishii in hydrogen peroxide and lipopolysaccharide treated RAW264.7 cells. Phytochemistry Letters, 24: 31-38, https://doi.org/10.1016/j.phytol.2018.01.006. Search in Google Scholar

Kuang M.T., Li J.Y., Yang X.B., et al., 2020. Structural characterization and hypoglycemic effect via stimulating glucagon-like peptide-1 secretion of two polysaccharides from Dendrobium officinale. Carbohydrate Polymers, 241: 116326, https://doi.org/10.1016/j.carbpol.2020.116326. Search in Google Scholar

Lee Y.H., Park J.D., Baek N.I., Kim S.I., Ahn B.Z., 1995. In vitro and in vivo antitumoral phenanthrenes from the aerial parts of Dendrobium nobile. Planta Medica, 61(2): 178-180. Search in Google Scholar

Lei S.S., Zhang N.Y., Zhou F.C., He X., Wang H.Y., Li L.Z., Zheng X., Dong Y.J., Luo R., Li B., Jin H.Y., Yu Q.X., Lv G.Y., Chen S.H., 2020. Dendrobium officinale regulates fatty acid metabolism to ameliorate liver lipid accumulation in NAFLD mice. Evidence Based Complementary and Alternative Medicine, 2021: 6689727. Search in Google Scholar

Li B., Wei J., Wei X., Tang K., Liang Y., Shu K., Wang B., 2008. Effect of sound wave stress on antioxidant enzyme activities and lipid peroxidation of Dendrobium candidum. Colloids and Surfaces B: Biointerfaces, 63(2): 269-275, https://doi.org/10.1016/j.colsurfb.2007.12.012. Search in Google Scholar

Li X.L., Xiao J.J., Zha X.Q., Pan L.H., Asghar M.N., Luo J.P., 2014. Structural identification and sulfated modification of an antiglycation Dendrobium huoshanense polysaccharide. Carbohydrate Polymer, 106: 247-254. Search in Google Scholar

Li L.S., Lu Y.L., Nie J., Xu Y.Y., Zhang W., Yang W.J., Gong Q.H., Lu Y.F., Lu Y., Shi J.S., 2017a. Dendrobium nobile Lindl alkaloid, a novel autophagy inducer, protects against axonal degeneration induced by Aβ25-35 in hippocampus neurons in vitro. CNS Neuroscience and Therapeutics, 23: 329-340. Search in Google Scholar

Li R., Liu T., Liu M., Chen F., Liu S., Yang J., 2017b. Anti-influenza A virus activity of dendrobine and its mechanism of action. Journal of Agriculture and Food Chemistry, 65(18): 3665-3674, https://doi.org/10.1021/acs.jafc.7b00276. Search in Google Scholar

Li X.W., Chen H.P., He Y.Y., Chen W.L., Chen J.W., Gao L., Hu H.Y., Wang J., 2018. Effects of rich-polyphenols extract of Dendrobium loddigesii on anti-diabetic, anti-inflammatory, anti-oxidant, and gut microbiota modulation in db/db mice. Molecules, 23: 3245, doi: 10.3390/molecules23123245. Search in Google Scholar

Li S., Zhou J., Xu S., Li J., Liu J., Lu Y., Shi J., Zhou S., Qu Q., 2019a. Induction of Nrf2 pathway by Dendrobium nobile Lindl. alkaloids protects against carbon tetrachloride induced acute liver injury. Biomedicine and Pharmacotherapy, 117: 109073, doi: 10.1016/j.biopha.2019.109073. Search in Google Scholar

Li Q.-M., Jiang H., Zha Z.-Q., Wu D.-L. Pan L.-H., Duan J., Liu J., Luo J.-P., 2019b. Anti-inflammatory bibenzyls from the stems of Dendrobium huoshanense via bioassay guided isolation. Natural Product Research, 34(4): 563-566, https://doi.org/10.1080/14786419.2018.1489394. Search in Google Scholar

Li X.L., Hong M., 2020. Aqueous extract of Dendrobium officinale confers neuroprotection against hypoxic-ischemic brain damage in neonatal rats, Kaohsiung. The Journal of Medical Sciences, 36(1): 43-53, https://doi.org/10.1002/kjm2.12139. Search in Google Scholar

Li Z., Xiang J., Hu D., Song B., 2020. Naturally potential antiviral agent polysaccharide from Dendrobium nobile Lindl. Pesticide Biochemistry and Physiology, 167: 104598, https://doi.org/10.1016/j.pestbp.2020.104598. Search in Google Scholar

Li P.-Y., Li L., Wang Y.-Z., 2023. Traditional uses, chemical compositions and pharmacological activitis of Dendrobium: A review. Journal of Ethnopharmacology, 310: 116382, https://doi.org/10.1016/j.jep.2023.116382. Search in Google Scholar

Liang J., Chen S., Hu Y., Yang Y., Yuan J., Wu Y., Li S., Lin J., He L., Hou S., Zhou L., Huang S., 2018. Protective roles and mechanisms of Dendrobium officinal polysaccharides on secondary liver injury in acute colitis. International Journal of Biological Macromolecules, 107: 2201-2210. Search in Google Scholar

Liang J., Li H., Chen J., He J., Du X., Zhou L., Xiong Q., Lai X., Yang Y., Huang S., Hou S., 2019a. Dendrobium officinale polysaccharides alleviate colon tumorigenesis via restoring intestinal barrier function and enhancing anti-tumor immune response. Pharmacological Research, 148: 104417, https://doi.org/10.1016/j.phrs.2019.104417. Search in Google Scholar

Liang J., Wu Y., Yuan H., Yang Y., Xiong Q., Liang C., Li Z., Li C., Zhang G., Lai X., Hu Y., Hou S., 2019b. Dendrobium officinale polysaccharides attenuate learning and memory disabilities via anti-oxidant and anti-inflammatory actions. International Journal of Biological Macromolecules, 126: 414-426, https://doi.org/10.1016/j.ijbiomac.2018.12.230. Search in Google Scholar

Liang J., Zeng Y., Wang H., Lou W., 2019c. Extraction, purification and antioxidant activity of novel polysaccharides from Dendrobium officinale by deep eutectic solvents. Natural Product Research, 33(22): 3248-3253, https://doi.org/10.1080/14786419.2018.1471480. Search in Google Scholar

Lin X., Shaw P.-C., Sze S.C.-W., Tong Y., Zhang Y., 2011. Dendrobium officinale polysaccharides ameliorate the abnormality of aquaporin 5, pro-inflammatory cytokines and inhibit apoptosis in the experimental Sjogren’s syndrome mice. International Journal of Immunopharmacology, 11(12): 2025-2032, https://doi.org/10.1016/j.intimp.2011.08.014. Search in Google Scholar

Lin Y., Wang F., Yang L.-J., Chun Z., Bao J.-K., Zhang G.- L., 2013. Anti-inflammatory phenanthrene derivatives from stems of Dendrobium denneanum. Phytochemistry, 95: 242-251, https://doi.org/10.1016/j.phytochem.2013.08.008. Search in Google Scholar

Lin G., Luo D., Liu J., Wu X., Chen J., Huang Q., Su L., Zeng L., Wang H., Su Z., 2018. Hepatoprotective effect of polysaccharides isolated from Dendrobium officinale against acetaminophen-induced liver injury in mice via regulation of the Nrf2-Keap1 signaling pathway. Oxidative Medicine and Cellular Longevity, 2018: 6962439, doi: 10.1155/2018/6962439. Search in Google Scholar

Liu J., Li Y., Liu W., Qi Q., Hu X., Li S., Lei J., Rong L., 2019. Extraction of polysaccharide from Dendrobium nobile Lindl. by subcritical water extraction. ACS Omega, 4: 20586-20594. Search in Google Scholar

Liu D., Dong Z., Xiang F., et al., 2020. Dendrobium alkaloids promote neural function after cerebral ischemia-reperfusion injury through inhibiting pyroptosis induced neuronal death in both in vivo and in vitro models. Neurochemical Research, 45(2): 437-454, https://doi.org/10.1007/s11064-019-02935-w. Search in Google Scholar

Liu B., Li Q.-M., Shang Z.Z., Zha X.-Q., Pan L.-H., Luo J.P., 2021a. Anti-gastric cancer activity of cultivated Dendrobium huoshanense stem polysaccharide in tumor-bearing mice: Effects of molecular weight and 0-acetyl group. International Journal of Biological Macromolecules, 192: 590-599, https://doi.org/10.1016/j.ijbiomac.2021.10.016. Search in Google Scholar

Liu L., Xiang H., Shen H., Dong Y., Sun X., Cai Y., Fan H., 2021b. Effects of low phosphorus stress on the main active ingredients and antioxidant activities of Dendrobium officinale. Industrial Crops and Products, 173: 114095, https://doi.org/10.1016/j.indcrop.2021.114095. Search in Google Scholar

Luo A.-X., He X.-J., Zhou S.D., Fan Y., He T., Chun Z., 2009. In vitro antioxidant activities of a water-soluble polysaccha-ride derived from Dendrobium nobile Lindl. extracts. International Journal of Biological Macromolecules, 45(4): 359-363, https://doi.org/10.1016/j.ijbiomac.2009.07.008. Search in Google Scholar

Luo A.-X., He X.-J., Zhou S.D., Fan Y., Luo A.-S., Chun, Z., 2010. Purification, composition analysis and antioxidant activity of the polysaccharides from Dendrobium nobile Lindl. Carbohydrate Polymers, 79(4): 1014-1019, https://doi.org/10.1016/j.carbpol.2009.10.033. Search in Google Scholar

Luo Q.L., Tang Z.-H., Zhang X.-F., Zhong Y.-H., Yao S.-Z., Wang L.-S., Lin C.-W., Luo X., 2016. Chemical properties and antioxidant activity of a water-soluble polysaccharide from Dendrobium officinale. International Journal of Biological Macromolecules, 89: 219-227, https://doi.org/10.1016/j.ijbiomac.2016.04.067. Search in Google Scholar

Marmitt D., Shahrajabian M.H., 2021. Plant species used in Brazil and Asia regions with toxic properties. Phytotherapy Research, 2021(2): 1-24, https://doi.org/10.1002/ptr.7100. Search in Google Scholar

Moretti M., Cossignani L., Messina F., Dominici L., Villarini M., Curini M., Marcotullio M.C., 2013. Antigenotoxic effect, composition and antioxidant activity of Dendrobium speciosum. Food Chemistry, 140(4): 660-665, https://doi.org/10.1016/j.foodchem.2012.10.022. Search in Google Scholar

Nie J., Tian Y., Zhang Y., et al., 2016. Dendrobium alkaloids prevent Aβ25-35-induced neuronal and synaptic loss via promoting neurotrophic factors expression in mice. PeerJ, 4: e2739, https://doi.org/10.7717/peerj.2739. Search in Google Scholar

Nie J, Jiang L.S., Zhang Y., Tian Y., Li L.S., Lu Y.L., Yang W.J., Shi J.S., 2018. Dendrobium nobile Lindl. alkaloids decreases the level of intracellular β-amyloid by improving impaired autolysosomal proteolysis in APP/PSI mice. Frontiers in Pharmacology, 9: 1479, https://doi.org/10.3389/fphar.2018.01479. Search in Google Scholar

Nie X., Chen Y., Li W., Lu Y., 2020. Anti-aging properties of Dendrobium nobile Lindl.: From molecular mechanisms to potential treatments. Journal of Ethnopharmacology, 2020: 112839, doi: 10.1016/j.jep.2020.112839. Search in Google Scholar

Pan L.H., Lu J., Luo J.P., Zha X.Q., Wang J.H., 2012. Preventive effect of a galactoglucomannan (GGM) from Dendrobium huoshanense on selenium-induced liver injury and fibrosis in rats. Experimental and Toxicologic Pathology, 64: 899-904, https://doi.org/10.1016/j.etp.2011.04.001. Search in Google Scholar

Pan L.H., Li X.F., Wang M.N., Zha X.Q., Yang X.F., Liu Z.J., Luo Y.B., Luo J.P., 2014. Comparison of hypoglycemic and antioxidative effects of polysaccharides from four different Dendrobium species. International Journal of Biological Macromolecule, 64: 420-427, https://doi.org/10.1016/j.ijbiomac.2013.12.024. Search in Google Scholar

Paudel M.R., Joshi P.R., Chand K., Sah A.K., Acharya S., Pant B., Pant B., 2020. Antioxidant, anticancer and antimicrobial effects of In vitro developed protocorms of Dendrobium longicornu. Biotechnology Reports, 28: e00527, https://doi.org/10.1016/j.btre.2020.e00527. Search in Google Scholar

Paul P., Kumaria S., 2020. Precursor-induced bioaccumulation of secondary metabolites and antioxidant activity in suspension cultures of Dendrobium fimbriatum, an orchid of therapeutic importance. South African Journal of Botany, 135: 137-143, https://doi.org/10.1016/j.sajb.2020.08.016. Search in Google Scholar

Qu J., Tan S., Xie X., et al., 2021. Dendrobium officinale polysaccharide attenuates insulin resistance and abnormal lipid metabolism in obese mice. Frontiers in Pharmacology, 12: 659626, https://doi.org/10.3389/fphar.2010.659626. Search in Google Scholar

Rahamtulla M., Mallikarjuna K., Khasim S.M., 2023. GCMS analysis and therapeutic importance of leaf extracts of Dendrobium aphyllum (Roxb.) C.E.C. Fischer: An in vitro study. South African Journal of Botany, 153: 62-76, https://doi.org/10.1016/j.sajb.2022.12.011. Search in Google Scholar

Sandrasagaran U.M., Subramaniam S., Murugaiyah V., 2014. New perspective of Dendrobium crumenatum orchid for antimicrobial activity against selected pathogenic bacteria. Pakistan Journal of Botany, 46(2): 719-724. Search in Google Scholar

Shahrajabian M.H., Sun W., Cheng Q., 2020a. Chemical components and pharmacological benefits of Basil (Ocimum basilicum): a review. International Journal of Food Properties, 23(1): 1961-1970, https://doi.org/10.1080/10942912.2020.1828456. Search in Google Scholar

Shahrajabian M.H., Sun W., Cheng Q., 2020b. Traditional herbal medicine for the prevention and treatment of cold and flu in the autumn of 2020, overlapped with Covid-19. Natural Product Communications, 15(8): 1-10, https://doi.org/10.1177/1934578X20951431. Search in Google Scholar

Shahrajabian M.H., Sun W., Soleymani A., Cheng Q., 2020c. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human corona-viruses. Phyotherapy Research, 2020(1): 1-11, https://doi.org/10.1002/ptr.6888. Search in Google Scholar

Shahrajabian M.H., 2021. Medicinal herbs with anti-inflammatory activities for natural and organic healing. Current Organic Chemistry, 25(23): 1-17, https://doi.org/10.2174/13852772825666211110115656. Search in Google Scholar

Shahrajabian M.H., Chaski C., Polyzos N., Petropoulos S.A., 2021a. Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules, 11(5): 698, https://doi.org/10.3390/biom11050698. Search in Google Scholar

Shahrajabian M.H., Chaski C., Polyzos N., Tzortzakis N., Petropoulos S.A., 2021b. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules, 11(6): 819, https://doi.org/10.3390/biom11060819. Search in Google Scholar

Shahrajabian M.H., Sun W., Cheng Q., 2021c. Molecular breeding and the impacts of some important genes families on agronomic traits, a review. Genetic Resource and Crop Evolution, 68(3): 1709-1730, https://doi.org/10.1007/s10722-021-01148-x. Search in Google Scholar

Shahrajabian M.H., Sun W., Cheng Q., 2021d. Different methods for molecular and rapid detection of human novel corona-virus. Current Pharmaceutical Design, 27: 1-10, https://doi.org/10.2174/1381612827666210604114411. Search in Google Scholar

Shahrajabian M.H., Sun, W., 2022. Medicinal plants, economical and natural agents with antioxidant activity. Current Nutrition and Food Science, 2022: 18, https://doi.org/10.2174/1573401318666221003110058. Search in Google Scholar

Shahrajabian M.H., Cheng Q., Sun W., 2022a. The most important medicinal herbs and plants in traditional Chinese and Iranian medicinal sciences with antioxidant activities. Letters in Drug Design and Discovery, 2022: 19(9), https://doi.org/10.2174/1570180819666220414102700. Search in Google Scholar

Shahrajabian M.H., Sun W., Cheng Q., 2022b. The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities. Mini-Reviews in Organic Chemistry, 19(3): 293-318, https://doi.org/10.2174/1570178618666210707161025. Search in Google Scholar

Shahrajabian M.H., Sun W., 2023a. Importance of thymoqui-none, sulforaphane, phloretin, and epigallocatechin and their health benefits. Letters in Drug Design and Discovery, 2023: 19, https://doi.org/10.2174/1570180819666220902115521. Search in Google Scholar

Shahrajabian M.H., Sun W., 2023b. Mechanism of action of collagen and epidermal growth factor: A review on theory and research methods. Mini-Reviews in Medicinal Chemistry, 2023: 23, https://doi.org/10.2174/1389557523666230816090054. Search in Google Scholar

Shahrajabian M.H., Sun W., 2023c. Study of different types of fermentation in wine-making process and considering aromatic substances and organic acid. Current Organic Synthesis, 2023: 20, https://doi.org/10.2174/1570179420666230803102253. Search in Google Scholar

Shahrajabian M.H., Sun W., 2023d. Survey on medicinal plants and herbs in traditional Iranian medicine with anti-oxidant, anti-viral, anti-microbial, and anti-inflammation properties. Letters in Drug Design and Discovery, 2023: 19, https://doi.org/10.2174/1570180819666220816115506. Search in Google Scholar

Shahrajabian M.H., Sun W., 2023e. The important nutritional benefits and wonderful health benefits of cashew (Anacardium occidentale L.). Natural Product Journal, 13(4): 2-10, https://doi.org/10.2174/2210315512666220427113702. Search in Google Scholar

Shahrajabian M.H., Petropoulos S.A., Sun W., 2023. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae, 9(193): 1-24, https://doi.org/10.3390/horticulturae9020193. Search in Google Scholar

Shang Z.-Z., Qin D.-Y., Li Q.-M., Zha X.-Q., Pan L.-H., Peng D.-Y., Luo J.-P., 2021. Dendrobium huoshanense stem polysaccharide ameliorates rheumatoid arthritis in mice via inhibition of inflammatory signaling pathways. Carbohydrate Polymer, 258: 117657, https://doi.org/10.1016/j.carbpo.2021.117657. Search in Google Scholar

Silva J., Alves C., Martins A., et al., 2021. Loliolide, a new therapeutic option for neurological diseases? In vitro neuroprotective and anti-inflammatory activities of a monoterpenoid lactone isolated from Codium tomentosum. International Journal of Molecular Sciences, 22(4): 1888, https://doi.org/10.3390/ijms22041888. Search in Google Scholar

Song J.I., Kang Y.J., Yong H.Y., Kim Y.C., 2012. Denbinobin, a phenanthrene from Dendrobium nobile, inhibits invasion and induces apoptosis in SNU-484 human gastric cancer cells. Oncology Reports, 27: 813-818. Search in Google Scholar

Sun W., Shahrajabian M.H., Cheng Q., 2021a. Barberry (Berberis vulgaris), a medicinal fruit and food with traditional and modern pharmaceutical uses. Israel Journal of Plant Science, 68(1-2): 1-11, https://doi.org/10.1163/22238980-bja10019. Search in Google Scholar

Sun W., Shahrajabian M.H., Cheng Q., 2021b. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini-Review in Medicinal Chemistry, 21(6): 724-730, https://doi.org/10.2174/1389557520666201127104907. Search in Google Scholar

Sun W., Shahrajabian M.H., Cheng Q., 2021c. Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and prevention of obesity during lock down and in post-Covid-19 era. Applied Science, 11(17): 7889, https://doi.org/10.3390/app11177889. Search in Google Scholar

Sun W., Shahrajabian M.H., Li M., 2022a. Research progress of fermented functional foods and protein factory-microbial fermentation technology. Fermentation, 8(12): 688, https://doi.org/10.3390/fermentation8120688. Search in Google Scholar

Sun C., Zhang N., Xu G., Jiang P., Huang S., Zhao Q., He Y., 2022b. Anti-tumor and immunomodulation activity of polysaccharides from Dendrobium officinale in S180 tumor-bearing mice. Journal of Functional Foods, 94: 105105, https://doi.org/10.1016/j.jff.2022.10105. Search in Google Scholar

Sun W., Shahrajabian M.H., 2023a. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants, 12(17): 3101, https://doi.org/10.3390/plants12173101. Search in Google Scholar

Sun W., Shahrajabian M.H., 2023b. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules, 28(1845): 1-45, https://doi.org/10.3390/molecules28041845. Search in Google Scholar

Tian C.-C., Zha X.-Q., Pan L.-H., Luo J.-P., 2013. Structural characterization and antioxidant activity of a low-molecular polysaccharide from Dendrobium huoshanense. Fitoterapia, 91: 247-255, https://doi.org/10.1016/j.fitote.2013.09.018. Search in Google Scholar

Wang J.H., Zha X.Q., Feng B.J., 2010. Comparison or antitumor activities of different polysaccharide fractions from the stems of Dendrobium nobile Lindl. Carbohydrate Polymer, 79: 114-118. Search in Google Scholar

Wang D., Zhao N., Zhang T., Xu H., 2012. Study on the chemical constituents of Dendrobium officinalis. Chinese Journal of Traditional Herb and Drugs, 43: 1492-1495. Search in Google Scholar

Wang X.Y., Luo J.P., Chen R., Zha X.Q., Wang H., 2014. The effects of daily supplementation of Dendrobium huoshanense polysaccharide on ethanol-induced subacute liver injury in mice by proteomic analysis. Food and Function, 5: 2020-2035. Search in Google Scholar

Wang X.Y., Luo J.P., Chen R., Zha X.Q., Pan L.H., 2015. Dendrobium huoshanense polysaccharide prevents ethanol-induced liver injury in mice by metabolomic analysis. International Journal of Biological Macromolecules, 78: 354-362. Search in Google Scholar

Wang Y.H., Avula B., Abe N., Wei F., Wang M., Ma S.C., Ali Z., Elsohly I., Khan A., 2016. Tandem mass spectrometry for structural identification of sesquiterpene alkaloids from the stems of dendrobium nobile using LC-QToF. Planta Medica, 82: 662-670. Search in Google Scholar

Wang S.S., Liu J.-M., Sun J., Sun Y.-F., Liu J.-N., Jia N., Fan B., Dai X.-F., 2019. Diversity of culture-independent bacteria and antimicrobial activity culturable endophytic bacteria isolated from different Dendrobium stems. Scientific Reports, 9: 10389, https://doi.org/10.1038/s41598-019-46863-9. Search in Google Scholar

Wang K., Yang X., Wu Z., Wang H., Li Q., Mei H., You R., Zhang Y., 2020. Dendrobium officinale polysaccharide protected CCl4-induced liver fibrosis through intestinal homeostasis and the LPS-TLR4-NF-κB signaling pathway. Frontiers in Pharmacology, 11: 240, https://doi.org/10.3389/fphar.2020.00240. Search in Google Scholar

Wang Y.-H., 2021. Traditional uses, chemical constituents, pharmacological activities, and toxicological effects of Dendrobium leaves: A review. Journal of Ethnopharmacology, 270: 113851, https://doi.org/10.1016/j.jep.2021.113851. Search in Google Scholar

Wang H.-Y., Ge J.-C., Zhang F.-Y., Zha X.-Q., Liu J., Li Q.- M., Luo J.-P., 2022a. Dendrobium officinale polysaccharide promotes M1 polarization of TAMs to inhibit tumor growth by targeting TLR2. Carbohydrate Polymer, 292: 119683, https://doi.org/10.1016/j.carbpol.2022.119683. Search in Google Scholar

Wang K.W., Yang C., Yan S.-N., Wang H., Cao X.-J., Cheng Y., 2022b. Dendrobium hancockii polysaccharides, structure characterization, modification, antioxidant and antibacterial activity. Industrial Crops and Products, 188(Part A): 115565, https://doi.org/10.1016/j.indcrop.2022.115565. Search in Google Scholar

Wang F., Wan J., Liao Y., Liu S., Wei Y., Ouyang Z., 2023. Dendrobium species regulate energy homeostasis in neurodegenerative disease: a review. Food Science and Human Wellness, 12: 2151-2174, https://doi.org/10.1016/j.fshw.2023.03.029. Search in Google Scholar

Wu J., Maoqiang L., Fan H., et al., 2016a. Rutin attenuates neuroinflammation in spinal cord injury rats. Journal of Surgical Research, 203(2): 331-337, https://doi.org/10.1016/j.jss.2016.02.041. Search in Google Scholar

Wu L.H., Lin C., Lin H.Y., et al., 2016b. Naringenin suppresses neuroinflammatory responses through inducing suppressor of cytokine signaling 3 expression. Molecular Neurobiology, 53(2): 1080-1091, https://doi.org/10.1007/s12035-014-9042-9. Search in Google Scholar

Wu L.-S., Jia M., Chen L., Zhu B., Dong H.-X., Si J.-P., Peng W., Han T., 2016c. Cytotoxic and antifungal constituents isolated from the metabolites of endophytic fungus DO14 from Dendrobium officinale. Molecules, 21(1): 14, https://doi.org/10.3390/molecules21010014. Search in Google Scholar

Wu Y.L., Huang S.H., He C.M., Qiu B., Liu J.J., Li J., Lin Y., Yu S.L., Wang H.F., Zhang G.F., 2020. Dendrobium officinale flower extraction mitigates alcohol-induced liver injury in mice: role of antisteatosis, antioxidative, and anti-inflammatory. Evidence-Based Complementary and Alternative Medicine, 2020(1853): 142, doi: 10.1155/2020/1421853. Search in Google Scholar

Wu W., Lin Y., Farag M.A., Li Z., Shao P., 2023. Dendrobium as a new natural source of bioactive for the prevention and treatment of digestive tract diseases: A comprehensive review with future perspectives. Phytomedicine, 114: 154784, https://doi.org/10.1016/j.phymed.2023.154784. Search in Google Scholar

Xiang Y., Chen X., Wang W., et al., 2021. Natural product erianin inhibits bladder cancer cell growth by inducing ferroptosis via NLRP3 inactivation. Frontiers in Pharmacology, 12: 775506, https://doi.org/10.3389/fphar.2021.775506. Search in Google Scholar

Xing S., Yu W., Zhang X., Luo Y., Lei Z., Huang D., Lin J., Huang Y., Huang S., Nong F., Zhou C., Wei G., 2018. Isoviolanthin extracted from Dendrobium officinale reverses TGF-ß1-mediated epithelial–mesenchymal transition in hepatocellular carcinoma cells via deactivating the TGF- ß/ Smad and PI3K/Akt/mTOR signaling pathways. International Journal of Molecular Sciences, 19: 1556, doi: 10.3390/ ijms19061556. Search in Google Scholar

Yang L., Qin L.-H., Bligh S.W.A., Bashall A., Zhang C.-F., Zhang M., Wang Z.-T., Xu L.-S., 2006. A new phenanthrene with a spirolactone from Dendrobium chrysanthum and its anti-inflammatory activities. Bioorganic and Medicinal Chemistry, 14(10): 3496-3501, https://doi.org/10.1016/j.bmc.2006.01.004. Search in Google Scholar

Yang H., Sung S.H., Kim Y.C., 2007. Antifibrotic phenanthrenes of Dendrobium nobile stems. Journal of Natural Product, 70: 1925-1929. Search in Google Scholar

Yang L.C., Lu T.J., Hsieh C.C., Lin W.C., 2014. Characterization and immunomodulatory activity of polysaccharides derived from Dendrobium tosaense. Carbohydrate Polymer, 111: 856-863. Search in Google Scholar

Yang J., Chen H., Nie Q., Huang X., Nie S., 2020a. Dendrobium officinale polysaccharide ameliorates the liver metabolism disorders of type II diabetic rats. International Journal of Biological Macromolecules, 164: 1939-1948. Search in Google Scholar

Yang K., Zhang L., Lu T., Zhou C., Chen X., Dong Y., Lv G., Chen S., 2020b. Dendrobium officinale polysaccharides protected against ethanol-induced acute liver injury in vivo and in vitro via the TLR4/NF-κB signaling pathway. Cytokine, 130: 155058. Search in Google Scholar

Ye Q., Zhao W., 2002. New alloaromaendrane, cadinene and cyclocopacamphane type sesquiterpene derivatives and bibenzyls from Dendrobium nobile. Planta Medica, 68: 723-729. Search in Google Scholar

Ye G., Li J., Zhang J., Liu H., Ye Q., Wang Z., 2021. Structural characterization and antitumor activity of a polysaccharide from Dendrobium waradianum. Carbohydrate Polymer, 269: 118253, https://doi.org/10.1016/j.carbpol.2021.118253. Search in Google Scholar

Yoon M.Y., Hwang J.H., Park J.H., et al., 2011. Neuroprotective effects of SG-168 against oxidative stress-induced apoptosis in PC12 cells. Journal of Medicinal Food, 14(1/2): 120-127, https://doi.org/10.1089/jmf.2010.1027. Search in Google Scholar

Zeng Q., Ko C.-H., Siu W.-S., Li K.K., Wong C.-W., Han X.-Q., Yang L., Lau C.B.-C., Hu J.-M., Leung P.-C., 2018. Inhibitory effect of different Dendrobium species on LPS-induced inflammation in macrophages via suppression of MAPK pathways. Chinese Journal of Natural Medicines, 16(7): 481-489, https://doi.org/10.1016/S1875-5364(18)30083-9. Search in Google Scholar

Zhang X., Xu J.K., Wang J., Wang N.L., Kurihara, H., Ki-tanaka, S., Yao, X.S., 2007. Bioactive bibenzyl derivatives and fluorenones from Dendrobium nobile. Journal of Natural Products, 70: 24-28. Search in Google Scholar

Zhang, X., Xu, J., Wang, N., Hiroshi, K., Yao X., 2008a. Anti-oxidant phenanthrenes and lignans from Dendrobium nobile. Journal of Chinese Pharmaceutical Sciences, 17: 314-318. Search in Google Scholar

Zhang X., Xu J., Wang N., Hiroshi K., Yao X., Wang Z., 2008b. Studies on antioxidant activity of bibenzyls and phenolic components from Dendrobium nobile. Chinese Pharmaceutical Journal, 43: 829-832. Search in Google Scholar

Zhang Y., Zhang L., Liu J., Liang J., Si J., Wu S., 2017. Dendrobium officinale leaves as a new antioxidant source. Journal of Functional Foods, 37: 400-415, https://doi.org/10.1016/j.jff.2017.08.006. Search in Google Scholar

Zhang Y., Wang H., Mei N., Ma C., Lou Z., Lv W., He G., 2018. Protective effects of polysaccharide from Dendrobium nobile against ethanol-induced gastric damage in rats. International Journal of Biological Macromolecules, 107: 230-235. Search in Google Scholar

Zhang L., Peng H., Xu J., et al., 2019a. Effects of Dendrobium officinale polysaccharides on brain inflammation of epileptic rats. International Journal of Polymer Science, 2019: 1-6, https://doi.org/10.1155/2019/9058161. Search in Google Scholar

Zhang X., Zhang S., Gao B., Qian Z., Liu J., Wu S., Si J., 2019b. Identification and quantitative analysis of phenolic glycosides with antioxidant activity in methanolic extract of Dendrobium catenatum flowers and selection of quality control herb-markers. Food Research International, 123: 732-745, https://doi.org/10.1016/j.foodres.2019.05.040. Search in Google Scholar

Zhang Y., Luo J., Zhang Q., Lu J., 2019c. The structure-activity relationship and molecular mechanism of anti-tumor polysaccharide isolated from Dendrobium nobile Lindl. Current Topics in Nutraceutical Research, 17: 153-163. Search in Google Scholar

Zhang Q., Li J., Luo M., Xie G.Y., Zeng W., Wu Y., Zhu Y., Yang X., Guo A.Y., 2020. Systematic transcriptome and regulatory network analyses reveal the hypoglycemic mechanism of Dendrobium fimbriatum. Molecular Therapy. Nucleic Acids, 19: 1-14, https://doi.org/10.1016/j.omtn.2019.10.033. Search in Google Scholar

Zhang X., Hu L., Xu S., et al., 2021. Erianin: a direct NLRP3 inhibitor with remarkable anti-inflammatory activity. Frontiers in Immunology, 12: 739953, https://doi.org/10.3389/fimmu.2021.739953. Search in Google Scholar

Zhang Z.-M., Liu S., Wang N., Zou Y.-H., Zhuang P.-Y., Wang X.-X., Liu H., 2022. Chemical constituents from Dendrobium chrysanthum and their chemotaxonomic significance. Biochemical Systematics and Ecology, 105: 104522, https://doi.org/10.1016/j.bse.2022.104522. Search in Google Scholar

Zhang H., Shahrajabian M.H., Cui H., Kuang Y., Sun W., 2024. Novel aspects and directions in pest control and management-proteins with insecticidal properties. Current Green Chemistry, 11(3): 272-285, https://doi.org/10.2174/0122133461275040231026045521. Search in Google Scholar

Zhao W., Ye Q., Tan X., Jiang H., Li X., Chen K., Kinghorn A.D., 2001. Three new sesquiterpene glycosides from Dendrobium nobile with immunomodulatory activity. Journal of Natural Product, 64: 1196-1200. Search in Google Scholar

Zheng H., Pan L., Xu P., Zhu J., Wang R., Zhu W., Hu Y., Gao H., 2017. An NMR-based metabolomic approach to unravel the preventive effect of water-soluble extract from Dendrobium officinale Kimura & Migo on streptozotocin-induced diabetes in mice. Molecules, 22: 1543, doi: 10.3390/ molecules22091543. Search in Google Scholar

Zheng S., Hu Y., Zhao R., Zhao Y., Li H., Rao D., Chun Z., 2020. Quantitative assessment of secondary metabolites and cancer cell inhibiting activity by high performance liquid chromatography fingerprinting in Dendrobium nobile. Journal of Chromatography B, 1140: 122017, doi: 10.1016/j. jchromb.2020.122017. Search in Google Scholar

Zhou X.M., Zheng C.J., Gan L.S., Chen G.Y., Zhang X.P., Song X.P., Li G.N., Sun C.G., 2016. Bioactive phenanthrene and bibenzyl derivatives from the stems of Dendrobium nobile. Journal of Natural Product, 79: 1791-1797. Search in Google Scholar

Zhou J., Zhang Y., Li S., Zhou Q., Lu Y., Shi J., Liu J., Wu Q., Zhou S., 2020. Dendrobium nobile Lindl. alkaloids-mediated protection against CCl4-induced liver mitochondrial oxidative damage is dependent on the activation of Nrf2 signaling pathway. Biomedicine and Pharmacotherapy, 129: 110351, doi: 10.1016/j.biopha.2020.110351. Search in Google Scholar

Zhu Y., Liu M., Cao C., et al., 2021. Dendrobium officinale flos increases neurotrophic factor expression in the hippocampus of chronic unpredictable mild stress-exposed mice and in astrocyte primary culture and potentiates NGF-induced neuronal differentiation in PC12 cells. Phytotherapy Research, 35(5): 2665-2677, https://doi.org/10.1002/ptr.7013. Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
1 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Nauka o roślinach, Ekologia