[1. Brown, P. J. B., Hincks, S. (2008), “A Framework for Housing Market Area Delineation: Principles and Application”, Urban Studies, Vol. 45, No. 11, pp. 2225-2247.10.1177/0042098008095866]Search in Google Scholar
[2. Brown, P. J. B., Pitfield, D. E. (1990), “The Intramax derivation of commodity market structures from freight flow data”, Transportation Planning and Technology, Vol. 15, No. 1, pp. 59-81.10.1080/03081069008717440]Search in Google Scholar
[3. Drobne, S. (2016), “Model vrednotenja števila in območij funkcionalnih regij” (“A Model Evaluating the Number and Areas of Functional Regions”; in Slovene only), Doctoral thesis, University of Ljubljana, Faculty of Civil and Geodetic Engineering, Ljubljana.]Search in Google Scholar
[4. Drobne, S., Bogataj, M. (2014), “Regions for Servicing Old People: Case study of Slovenia”, Business systems research journal, Vol. 5, No. 3, pp. 19-36.10.2478/bsrj-2014-0017]Search in Google Scholar
[5. Drobne, S., Bogataj, M. (2015), “Optimal allocation of public service centres in the central places of functional regions”, in 15th IFAC/IEEE/IFIP/IFORS Symposium on Information Control Problems in Manufacturing, INCOM 2015, IFAC, Ottawa, pp. 2449-2454.10.1016/j.ifacol.2015.06.441]Search in Google Scholar
[6. Drobne, S., Lakner, M. (2017), “A concept of SM-measure to compare hierarchical clustering”, in Zadnik Stirn, L. et al. (Eds.), SOR '17 proceedings, Slovenian Society Informatika, Section for Operational Research, Ljubljana, pp. 308-313.]Search in Google Scholar
[7. Fowlkes, E. B., Mallows, C. L. (1983), “A Method for Comparing Two Hierarchical Clusterings”, Journal of the American Statistical Association, Vol. 78, No. 383, pp. 553-569.10.1080/01621459.1983.10478008]Search in Google Scholar
[8. Gehlke, C. E., Biehl, K. (1934), “Certain effects of grouping upon the size of the correlation coefficient in census tract material”, Journal of the American Statistical Association, Vol. 29, No. 185a, pp. 169-170.]Search in Google Scholar
[9. Hubert, L., Arabie, P. (1985), “Comparing partitions”, Journal of Classification, Vol. 2, pp. 193-218.10.1007/BF01908075]Search in Google Scholar
[10. Jaccard, P. (1912), “The distribution of the flora in the Alpine Zone”, New Phytologist, Vol. 11, No. 2, pp. 37-50.10.1111/j.1469-8137.1912.tb05611.x]Search in Google Scholar
[11. Jaegal, Y. (2013), “Delineating Housing Market Areas in the Seoul Metropolitan Area Using a Geo-Computational Approach”, Journal of the Association of Korean Geographers, Vol. 2, No. 1, pp. 7-20.10.25202/JAKG.2.1.2]Search in Google Scholar
[12. Jenko, D., Drobne, S. (2014), “Modeliranje prostorskih vzorcev delovne mobilnosti in selitev z vektorskimi polji” (“Modelling commuting and migration patterns using vector fields”; in Slovene only), in Ciglič, R., Perko, D., Zorn, M. (Eds.), Digitalni prostor, GIS v Sloveniji, 12, ZRC, Ljubljana, pp. 163-171.]Search in Google Scholar
[13. Johansson, B. (1998), “Infrastructure, Market Potential and Endogenous Growth”, Jönköping International Business School, Jönköping (Mimeo).]Search in Google Scholar
[14. Karlsson, C., Olsson, M. (2006), “The identification of functional regions: theory, methods, and applications”, The Annals of Regional Science, Vol. 40, No. 1, pp. 1-18.10.1007/s00168-005-0019-5]Search in Google Scholar
[15. Kohl, T., Brouver, A. E. (2014), “The Development of Trade Blocs in an Era of Globalisation”, Environment and Planning A, Vol. 46, No. 7, pp. 1535-1553.10.1068/a46261]Search in Google Scholar
[16. Koo, H. (2012), “Improved Hierarchical Aggregation Methods for Functional Regionalization in the Seoul Metropolitan Area”, Journal of the Korean Cartographic Association, Vol. 12, No. 2, pp. 25-35.]Search in Google Scholar
[17. Landré, M., Håkansson, J. (2013), “Rule versus Interaction Function: Evaluating Regional Aggregations of Commuting Flows in Sweden”, European Journal of Transport and Infrastructure Research, Vol. 13, No. 1, pp. 1-19.]Search in Google Scholar
[18. Li, T., Ogihara, M., Sheng, M. (2004), “On Combining Multiple Clusterings”, Proceedings of the ACM Conference on Information and Knowledge Management, Vol. 13, pp. 294-303.10.1145/1031171.1031234]Search in Google Scholar
[19. Masser, I., Brown, P. J. B. (1975), “Hierarchical Aggregation Procedures for Interaction Data”, Environment and Planning A, Vol. 7, No. 5, pp. 509-523.10.1068/a070509]Search in Google Scholar
[20. Masser, I., Scheurwater, J. (1980), “Functional Regionalisation of Spatial Interaction Data: An Evaluation of Some Suggested Strategies”, Environment and Planning A, Vol. 12, No. 12, pp. 1357-1382.10.1068/a121357]Search in Google Scholar
[21. Meila, M., Heckerman, D. (1999), “An Experimental Comparison of Model-based Clustering Methods”, Proceedings of the Conference on Knowledge Discovery and Data Mining, pp. 16-22.]Search in Google Scholar
[22. Mirkin, B. G. (1996), “Mathematical classification and clustering”, Kluwer Academic Press.10.1007/978-1-4613-0457-9]Search in Google Scholar
[23. Mitchell, W., Baum, S., Flanagan, M., Hannan, M. (2013). “CofFEE Functional Economic Regions”, available at: http://e1.newcastle.edu.au/coffee/functional_regions/ (18 November 2015).]Search in Google Scholar
[24. Openshaw, S. (1984), “The Modifiable Areal Unit Problem”, Geobooks, Norwich.]Search in Google Scholar
[25. Rand, W. M. (1971), “Objective Criteria for the Evaluation of Clustering Methods”, Journal of the American Statistical Association, Vol. 66, No. 336, pp. 846-850.10.1080/01621459.1971.10482356]Search in Google Scholar
[26. Romano, S., Vinh, N. X., Bailey, J., K. Verspoor (2016), “Adjusting for Chance Clustering Comparison Measures”, Journal of Machine Learning Research, Vol. 17, pp. 1-32.]Search in Google Scholar
[27. SMARS (2016), “Digital data on territorial units of Slovenia, Data on municipalities, the Surveying and Mapping Authority of the Republic Slovenia, Ljubljana”, available at: http://www.gu.gov.si/en/services/free_access_database/ (15January 2016).]Search in Google Scholar
[28. SORS (2016), “Persons in employment (excluding farmers) by municipalities of residence and municipalities of workplace by sex, municipalities, Slovenia, annually), the Statistical office of the Republic Slovenia, Ljubljana”, available at: http://pxweb.stat.si/pxweb/Dialog/varval.asp?ma=0723405E&ti=&path=../Database/Demographics/07_labour_force/05_labour_force_register/10_07234_working_migrations/&lang=1 (15 January 2016).]Search in Google Scholar
[29. Stillwell, J., Daras, K., Bell, M., Lomax, N. (2014), “The IMAGE Studio: A tool for internal migration analysis and modelling”, Applied Spatial Analysis and Policy, Vol. 7, No. 1, pp. 5-23.10.1007/s12061-014-9104-4]Search in Google Scholar
[30. van Dongen, S. (2000), “Performance Criteria for Graph Clustering and Markov Cluster Experiments”, Technical Report INS-R0012, Centrum voor Wiskunde en Informatica.]Search in Google Scholar
[31. Vinh, N. X., Epps, J., Bailey, J. (2010), “Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance”, The Journal of Machine Learning Research, Vol. 11, pp. 2837-2854.]Search in Google Scholar
[32. Wagner, S., Wagner, D. (2007), “Comparing Clusterings - An Overview”, Technical Report 2006-04, Faculty of Informatics, University of Karlsruhe.]Search in Google Scholar
[33. Wallace, D. L. (1983), “A Method for Comparing Two Hierarchical Clusterings: Comment”, Journal of the American Statistical Association, Vol. 78, No. 383, pp. 569-576.10.2307/2288118]Search in Google Scholar