Otwarty dostęp

Investigation of circulating serum microRNA-328-3p and microRNA-3135a expression as promising novel biomarkers for autism spectrum disorder


Zacytuj

Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism and function. Cell. 2004; 116(2): 281-297.BartelDPMicroRNAs: Genomics, biogenesis, mechanism and functionCell2004116228129710.1016/S0092-8674(04)00045-5Search in Google Scholar

Mattick JS and Makunin IV. Non-coding RNA. Hum Mol Genet. 2006; 15(15): R17-R29.MattickJSMakuninIVNon-coding RNAHum Mol Genet20061515R17R2910.1093/hmg/ddl04616651366Search in Google Scholar

Fombonne E. Epidemiology of pervasive developmental disorders. Pediatr Res. 2009; 65(6): 591-598.FombonneEEpidemiology of pervasive developmental disordersPediatr Res200965659159810.1093/med/9780195371826.003.0007Search in Google Scholar

Developmental Disabilities Monitoring Network Surveillance Year 2010. Principal Investigators, Centers for Disease Control and Prevention (CDC). Prevalence of autism spectrum disorder among children aged 8 years– autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ. 2014; 63(2): 1-21.Developmental Disabilities Monitoring Network Surveillance Year2010Principal Investigators, Centers for Disease Control and Prevention (CDC). Prevalence of autism spectrum disorder among children aged 8 years– autism and developmental disabilities monitoring network, 11 sites, United States, 2010MMWR Surveill Summ2014632121Search in Google Scholar

Rutter M. Incidence of autism spectrum disorders: Changes over time and their meaning. Acta Paediatr. 2005; 94(1): 2-15.RutterMIncidence of autism spectrum disorders: Changes over time and their meaningActa Paediatr200594121510.1111/j.1651-2227.2005.tb01779.x15858952Search in Google Scholar

Persico AM, Merelli S. Environmental factors and autism spectrum disorder. In: Leboyer M, Chaste P, Editors. Autism Spectrum Disorders: Phenotypes, Mechanisms and Treatments, Vol. 180. Basil, Switzerland: Karger AG. 2015: 113-134.PersicoAMMerelliSEnvironmental factors and autism spectrum disorderLeboyerMChastePAutism Spectrum Disorders: Phenotypes, Mechanisms and Treatments180Basil, SwitzerlandKarger AG201511313410.1159/000363611Search in Google Scholar

Frans EM, Sandin S, Reichenberg A, Langström N, Lichtenstein P, McGrath JJ, et al. Autism risk across generations: a population-based study of advancing grandpaternal and paternal age. JAMA Psychiat. 2013; 70(5): 516-521.FransEMSandinSReichenbergALangströmNLichtensteinPMcGrathJJAutism risk across generations: a population-based study of advancing grandpaternal and paternal ageJAMA Psychiat201370551652110.1001/jamapsychiatry.2013.1180370102023553111Search in Google Scholar

Ruggeri B, Sarkans U, Schumann G, Persico AM. Biomarkers in autism spectrum disorder: the old and the new. Psychopharmacology (Berl). 2014; 231(6): 1201-1216.RuggeriBSarkansUSchumannGPersicoAMBiomarkers in autism spectrum disorder: the old and the newPsychopharmacology (Berl)201423161201121610.1007/s00213-013-3290-724096533Search in Google Scholar

Lang W, Reimn EM, Valla J, Dunckley T, Beach TG, Grover A, et al. Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA. 2008; 105(11): 4441-4446.LangWReimnEMVallaJDunckleyTBeachTGGroverAAlzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neuronsProc Natl Acad Sci USA2008105114441444610.1073/pnas.0709259105239374318332434Search in Google Scholar

Müller M, Jäkel L, Bruinsma IB, Claassen JA, Kuiperij HB, Verbeek MM. MicroRNA-29a is a candidate biomarker for Alzheimer’s disease in cell-free cerebrospinal fluid. Mol Neurobiol. 2016; 53(5): 2894-2899.MüllerMJäkelLBruinsmaIBClaassenJAKuiperijHBVerbeekMMMicroRNA-29a is a candidate biomarker for Alzheimer’s disease in cell-free cerebrospinal fluidMol Neurobiol20165352894289910.1007/s12035-015-9156-8490282925895659Search in Google Scholar

Ding H, Huang Z, Chen M, Wang C, Chen X, Chen J, et al. Identification of a panel of five serum miRNAs as a biomarker for Parkinson’s disease. Parkinsonism Relat Disord. 2016; 22: 68-73.DingHHuangZChenMWangCChenXChenJIdentification of a panel of five serum miRNAs as a biomarker for Parkinson’s diseaseParkinsonism Relat Disord201622687310.1016/j.parkreldis.2015.11.01426631952Search in Google Scholar

Ghahramani Seno MM, Hu P, Gwadry FG, Pinto D, Marshall CR, Casallo G, et al. Gene and miRNA expression profiles in autism spectrum disorders. Brain Res. 2011; 1380: 85-97.GhahramaniSeno MMHuPGwadryFGPintoDMarshallCRCasalloGGene and miRNA expression profiles in autism spectrum disordersBrain Res20111380859710.1016/j.brainres.2010.09.04620868653Search in Google Scholar

Sarachana T, Zhou R, Chen G, Manji HK, Hu VW. Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med. 2010; 2(4): 23.SarachanaTZhouRChenGManjiHKHuVWInvestigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell linesGenome Med2010242310.1186/gm144287380120374639Search in Google Scholar

Talebizadeh Z, Butler MG, Theodoro MF. Feasibility and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autism. Autism Res. 2008; 1(4): 240-250.TalebizadehZButlerMGTheodoroMFFeasibility and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autismAutism Res20081424025010.1002/aur.33276833419360674Search in Google Scholar

Kosik KS. The neuronal microRNA system. Nat Rev Neurosci. 2006; 7(12): 911-920.KosikKSThe neuronal microRNA systemNat Rev Neurosci200671291192010.1038/nrn203717115073Search in Google Scholar

Gaughwin P, Ciesla M, Yang H, Lim B, Brundin P. Stage-specific modulation of cortical neuronal development by Mmu-miR-134. Cereb Cortex. 2011; 21(8): 1857-1869.GaughwinPCieslaMYangHLimBBrundinPStage-specific modulation of cortical neuronal development by Mmu-miR-134Cereb Cortex20112181857186910.1093/cercor/bhq26221228099Search in Google Scholar

Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, et al. Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron. 2010; 65(3): 373-384.EdbauerDNeilsonJRFosterKAWangCFSeeburgDPBattertonMNRegulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132Neuron201065337338410.1016/j.neuron.2010.01.005501839820159450Search in Google Scholar

Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HY, et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA. 2008; 105(26): 9093-9098.WaymanGADavareMAndoHFortinDVarlamovaOChengHYAn activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAPProc Natl Acad Sci USA2008105269093909810.1073/pnas.0803072105244937018577589Search in Google Scholar

Tao J, Wu H, Lin Q, Wei W, Lu XH, Cantle JP, et al. Deletion of astroglial Dicer causes non-cell-autonomous neuronal dysfunction and degeneration. J Neurosci. 2011; 31(22): 8306-8319.TaoJWuHLinQWeiWLuXHCantleJPDeletion of astroglial Dicer causes non-cell-autonomous neuronal dysfunction and degenerationJ Neurosci201131228306831910.1523/JNEUROSCI.0567-11.2011350009721632951Search in Google Scholar

Lu J, Xu X, Liu X, Peng Y, Zhang B, Wang L, et al. Predictive value of miR-9 as a potential biomarker for nasopharyngeal carcinoma metastasis. Br J Cancer. 2014; 110(2): 392-398.LuJXuXLiuXPengYZhangBWangLPredictive value of miR-9 as a potential biomarker for nasopharyngeal carcinoma metastasisBr J Cancer2014110239239810.1038/bjc.2013.751389977424327016Search in Google Scholar

Ma W, Ma C, Zhou N, Li X, Zhang Y. Up-regulation of miR-328-3p sensitizes non-small cell lung cancer to radiotherapy. Sci Rep. 2016; 6: 31651. doi: 10.1038/ srep31651.MaWMaCZhouNLiXZhangYUp-regulation of miR-328-3p sensitizes non-small cell lung cancer to radiotherapySci Rep201663165110.1038/Open DOISearch in Google Scholar

De Felice B, Guida M, Guida M, Coppola C, De Mieri G, Cotrufo R. A miRNA signature in leukocytes from sporadic amyotrophic lateral sclerosis. Gene. 2012; 508(1): 35-40.DeFelice BGuidaMGuidaMCoppolaCDeMieri GCotrufoRA miRNA signature in leukocytes from sporadic amyotrophic lateral sclerosisGene20125081354010.1016/j.gene.2012.07.05822903028Search in Google Scholar

Provost P. Interpretation and applicability of microRNA data to the context of Alzheimer’s and age-related diseases. Aging (Albany, NY, USA). 2010; 2(3): 166-169.ProvostPInterpretation and applicability of microRNA data to the context of Alzheimer’s and age-related diseasesAging (Albany, NY, USA)20102316616910.18632/aging.100131287124520375468Search in Google Scholar

Provost P. MicroRNAs as a molecular basis for mental retardation, Alzheimer’s and prion diseases. Brain Res. 2010; 1338: 58-66.ProvostPMicroRNAs as a molecular basis for mental retardation, Alzheimer’s and prion diseasesBrain Res20101338586610.1016/j.brainres.2010.03.069289696720347722Search in Google Scholar

Vasu M, Anitha M, Thanseem A, Suzuki I, Yamada K, Takahashi K, et al. Serum microRNA profiles in children with autism. Mol Autism. 2014; 5: 40.VasuMAnithaMThanseemASuzukiIYamadaKTakahashiKSerum microRNA profiles in children with autismMol Autism201454010.1186/2040-2392-5-40413242125126405Search in Google Scholar

Okita K, Yamanaka S. Induced pluripotent stem cells: Opportunities and challenges. Philos Trans R Soc Lond B Biol Sci. 2011; 366(1575): 2198-2207.OkitaKYamanakaSInduced pluripotent stem cells: Opportunities and challengesPhilos Trans R Soc Lond B Biol Sci201136615752198220710.1098/rstb.2011.0016313041721727125Search in Google Scholar

Abu-Elneel K, Liu T, Gazzaniga FS, Nishimura Y, Wall DP, Geschwind DH, et al. Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics. 2008; 9(3): 153-161.Abu-ElneelKLiuTGazzanigaFSNishimuraYWallDPGeschwindDHHeterogeneous dysregulation of microRNAs across the autism spectrumNeurogenetics20089315316110.1007/s10048-008-0133-518563458Search in Google Scholar

Talebizadeh Z, Butler MG, Theodoro MF. Feasibility and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autism. Autism Res. 2008; 1(4): 240-250.TalebizadehZButlerMGTheodoroMFFeasibility and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autismAutism Res20081424025010.1002/aur.33276833419360674Search in Google Scholar

Ucar A, Vafaizadeh V, Jarry H, Fiedler J, Klemmt PA, Thum T, et al. miR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland development. Nat Genet. 2010; 42(12): 1101-1108.UcarAVafaizadehVJarryHFiedlerJKlemmtPAThumTmiR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland developmentNat Genet201042121101110810.1038/ng.70921057503Search in Google Scholar

Leinders M, Üçeyler N, Pritchard RA, Sommer C, Sorkin LS. Increased miR-132-3p expression is associated with chronic neuropathic pain. Exp Neurol. 2016; 283(Pt A): 276-286.LeindersMÜçeylerNPritchardRASommerCSorkinLSIncreased miR-132-3p expression is associated with chronic neuropathic painExp Neurol2016283Pt A27628610.1016/j.expneurol.2016.06.025499258927349406Search in Google Scholar

Shaltiel G, Hanan M, Wolf Y, Barbash S, Kovalev E, Shoham S, et al. Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct Funct. 2013; 218(1): 59-72.ShaltielGHananMWolfYBarbashSKovalevEShohamSHippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase targetBrain Struct Funct20132181597210.1007/s00429-011-0376-z353540322246100Search in Google Scholar

Hicks SD, Ignacio C, Gentile K, Middleton FA. Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment. BMC Pediatr. 2016; 16: 52.HicksSDIgnacioCGentileKMiddletonFASalivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopmentBMC Pediatr2016165210.1186/s12887-016-0586-x484196227105825Search in Google Scholar

Mor M, Nardone S, Sams DS, Elliott E. Hypo-methylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex. Mol Autism. 2015; 6: 46.MorMNardoneSSamsDSElliottEHypo-methylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortexMol Autism201564610.1186/s13229-015-0040-1453525526273428Search in Google Scholar

de Chevigny A, Coré N, Follert P, Gaudin M, Barbry P, Béclin C, et al miR-7a regulation of Pax6 controls spatial origin of forebrain dopaminergic neurons. Nat Neurosci. 2012; 15(8): 1120-1126.deChevigny ACoréNFollertPGaudinMBarbryPBéclinCmiR-7a regulation of Pax6 controls spatial origin of forebrain dopaminergic neuronsNat Neurosci20121581120112610.1038/nn.314222729175Search in Google Scholar

Pollock A, Bian S, Zhang C, Chen Z, Sun T. Growth of the developing cerebral cortexIs controlled by microRNA-7 through the p53 pathway. Cell Rep. 2014; 7(4): 1184-1196.PollockABianSZhangCChenZSunTGrowth of the developing cerebral cortexIs controlled by microRNA-7 through the p53 pathwayCell Rep2014741184119610.1016/j.celrep.2014.04.003406741524813889Search in Google Scholar

eISSN:
1311-0160
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Medicine, Basic Medical Science, other