Otwarty dostęp

Study of Three Single Nucleotide Polymorphisms in the Slc6a14 Gene in Association with Male Infertility


Zacytuj

1. de Kretser DM, Loveland KL, Meinhardt A, Simorangkir D, Wreford N. Spermatogenesis. Hum Reprod. 1998; 13(Suppl 1): 1-8.10.1093/humrep/13.suppl_1.1Search in Google Scholar

2. Ferlin A, Arredi B, Foresta C. Genetic causes of male infertility. Reprod Toxicol. 2006; 22(2): 133-141.10.1016/j.reprotox.2006.04.016Search in Google Scholar

3. Plaseska-Karanfilska D, Noveski P, Plaseski T, Maleva I, Madjunkova S, Moneva Z. Genetic causes of male infertility. Balkan J Med Genet. 2012; 15(Suppl): 31-34.10.2478/v10034-012-0015-xSearch in Google Scholar

4. Dohle GR, Colpi GM, Hargreave TB, Papp GK, Jungwirth A, Weidner W; EAU Working Group on Male Infertility. EAU guidelines on male infertility. Eur Urol. 2005; 48(5): 703-711.10.1016/j.eururo.2005.06.002Search in Google Scholar

5. Sivakumaran S, Agakov F, Theodoratou E, Prendergast JG, Zgaga L, Manolio T, et al. Abundant pleiotropy in human complex diseases and traits. Am J Hum Genet. 2011; 89(5): 607-618.10.1016/j.ajhg.2011.10.004Search in Google Scholar

6. Aston KI, Krausz C, Laface I, Ruiz-Castane E, Carrell DT. Evaluation of 172 candidate polymorphisms for association with oligozoospermia or azoospermia in a large cohort of men of European descent. Hum Reprod. 2010; 25(6): 1383-1397.10.1093/humrep/deq081Search in Google Scholar

7. Plaseski T, Noveski P, Popeska Z, Efremov GD, Plaseska-Karanfilska D. Association study of single-nucleotide polymorphisms in FASLG, JMJDIA, LOC203413, TEX15, BRDT, OR2W3, INSR, and TAS2R38 genes with male infertility. J Androl. 2012; 33(4): 675-683.10.2164/jandrol.111.013995Search in Google Scholar

8. Sloan JL, Mager S. Cloning and functional expression of a human Na+ and Cl--dependent neutral and cationic amino acid transporter B0+. J Biol Chem. 1999; 274(34): 23740-23745.10.1074/jbc.274.34.23740Search in Google Scholar

9. Suviolahti E, Oksanen LJ, Ohman M, Cantor RM, Ridderstrale M, Tuomi T, et al. The SLC6A14 gene shows evidence of association with obesity. J Clin Invest. 2003; 112(11): 1762-1772.10.1172/JCI200317491Search in Google Scholar

10. Durand E, Boutin P, Meyre D, Charles MA, Clement K, Dina C, et al. Polymorphisms in the amino acid transporter solute carrier family 6 (neurotransmitter transporter) member 14 gene contribute to polygenic obesity in French Caucasians. Diabetes. 2004; 53(9): 2483-2486.10.2337/diabetes.53.9.2483Search in Google Scholar

11. Corpeleijn E, Petersen L, Holst C, Saris WH, Astrup A, Langin D, et al. Obesity-related polymorphisms and their associations with the ability to regulate fat oxidation in obese Europeans: the NUGENOB study. Obesity (Silver Spring). 2010; 18(7): 1369-1377.10.1038/oby.2009.377Search in Google Scholar

12. Sun L, Rommens JM, Corvol H, Li W, Li X, Chiang TA, et al. Multiple apical plasma membrane constituents are associated with susceptibility to meconium ileus in individuals with cystic fibrosis. Nat Genet. 2012; 44(5): 562-569.10.1038/ng.2221Search in Google Scholar

13. Li W, Soave D, Miller MR, Keenan K, Lin F, Gong J, et al. Unraveling the complex genetic model for cystic fibrosis: Pleiotropic effects of modifier genes on early cystic fibrosis-related morbidities. Hum Genet. 2014; 133(2): 151-161.10.1007/s00439-013-1363-7Search in Google Scholar

14. Aragon MA, Ayala ME, Marin M, Aviles A, Damian-Matsumura P, Dominguez R. Serotoninergic system blockage in the prepubertal rat inhibits spermatogenesis development. Reproduction. 2005; 129(6): 717-727.10.1530/rep.1.00598Search in Google Scholar

15. Tinajero JC, Fabbri A, Ciocca DR, Dufau ML. Serotonin secretion from rat Leydig cells. Endocrinology. 1993; 133(6): 3026-3029.10.1210/endo.133.6.8243331Search in Google Scholar

16. Collin O, Damber JE, Bergh A. 5-Hydroxytryptamine - A local regulator of testicular blood flow and vasomotion in rats. J Reprod Fertil. 1996; 106(1): 17-22.10.1530/jrf.0.1060017Search in Google Scholar

17. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics. 2005; 21(2): 263-265.10.1093/bioinformatics/bth457Search in Google Scholar

18. Sabarinathan R, Tafer H, Seemann SE, Hofacker IL, Stadler PF, Gorodkin J. The RNAsnp web server: Predicting SNP effects on local RNA secondary structure. Nucleic Acids Res. 2013; 41(Web Server issue): W475-W479.10.1093/nar/gkt291Search in Google Scholar

19. Barrett LW, Fletcher S, Wilton SD. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci. 2012; 69(21): 3613-3634.10.1007/s00018-012-0990-9Search in Google Scholar

20. Chatterjee S, Pal JK. Role of 5’- and 3’-untranslated regions of mRNAs in human diseases. Biol Cell. 2009; 101(5): 251-262.10.1042/BC20080104Search in Google Scholar

21. Haas U, Sczakiel G, Laufer SD. MicroRNAmediated regulation of gene expression is affected by disease-associated SNPs within the 3’-UTR via altered RNA structure. RNA Biol. 2012; 9(6): 924-937.10.4161/rna.20497Search in Google Scholar

22. Ritz J, Martin JS, Laederach A. Evaluating our ability to predict the structural disruption of RNA by SNPs. BMC Genomics. 2012; 13(Suppl 4): S6.10.1186/1471-2164-13-S4-S6Search in Google Scholar

eISSN:
1311-0160
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Medicine, Basic Medical Science, other