Otwarty dostęp

Memory of wheat to repeated Heat Stress during pre-anthesis could be responsible for improved tolerance

,  oraz   
10 gru 2024

Zacytuj
Pobierz okładkę

Ahmad, P., Jaleel, C.A., Salem, M.A., Nabi, G., Sharma, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol. 30(3):161-175. Search in Google Scholar

Annunziata, M. G., Ciarmiello, L. F., Woodrow, P., Maximova, E., Fuggi, A., Carillo, P. (2017). Durum Wheat Roots Adapt to Salinity Remodeling the Cellular Content of Nitrogen Metabolites and Sucrose, Frontiers in Plant Science; Vol 7. Search in Google Scholar

Arnon, D. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–15. Search in Google Scholar

Bacu, A., Hoxha, R., Kristollari, K. (2024). Different Level of Tolerance to Herbicides is Displayed by Triticum aestivum L. Cultivars Depending on Herbicide Category and Mode of Application. Artikull Shkencor; The EuroBiotech Journal, 8(1):44-54, DOI: 10.2478/ebtj-2024-0005. Search in Google Scholar

Bacu, A., Ibro, V., Nushi, M., Krekaj, M., Kristollari, K. (2020). Rubisco genes expression and pigment synthesis at early stages of development of wheat cultivar Dajti under saline stress conditions. Journal of Environmental Protection and Ecology 21, No 4, 1239–1246. Search in Google Scholar

Bacu, A., Ibro, V., Nushi, M. (2020). Compared salt tolerance of five local wheat (Triticum aestivum L.) cultivars of Albania based on morphology, pigment synthesis and glutathione content. The EuroBiotech Journal, Vol 4, Issue 1. DOI: 10.2478/ebtj-2020-0006. Search in Google Scholar

Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 40 4–10. 10.1111/pce.12800-DOI-PubMed Search in Google Scholar

Bos, V., Kunst, A.E., Mackenbach, J.P. (2000). Nationale gegevens over sociaaleconomische sterfteverschillen op basis van informatie over kleine geografische eenheden. Verslag aan de programmacommissie Sociaaleconomische gezondheidsverschillen II. Instituut Maatschappelijke Gezondheidszorg, Erasmus Universiteit: Rotterdam. Search in Google Scholar

Caverzan, A., Casassola, A., Brammer, S.P. (2016). Antioxidant responses of wheat plants under stress. Genet Mol Biol. 39(1):1-6. Search in Google Scholar

Chauhan, H., Khurana, N., Tyagi, A.K., Khurana, J.P., Khurana, P. (2011). Identification and characterization of high temperature stress responsive genes in bread wheat (Triticum aestivum L.) and their regulation at various stages of development. Plant Mol Biol, 75:35-51 Search in Google Scholar

Degen, G.E., Orr, D.J., Carmo-Silva, E. (2021). Heat-induced changes in the abundance of wheat Rubisco activase isoforms. New Phytol, 229 (3):1298-1311. DOI: 10.1111/nph.16937. Search in Google Scholar

Fan, Y., Ma, C., Huang, Z., Abid, M., Jiang, S., Dai, T., Zhang, W., Ma, S., Jiang, D., Han, X. (2018). Heat Priming During Early Reproductive Stages Enhances Thermo-Tolerance to Post-anthesis Heat Stress via Improving Photosynthesis and Plant Productivity in Winter Wheat (Triticum aestivum L.) Front. Plant Sci., Sec. Crop and Product Physiology, Volume 9, https://doi.org/10.3389/fpls.2018.00805 Search in Google Scholar

Habti, A.E., Fleury, D., Jewell, N., Garnett, T. and Tricker, P.J. (2020). Tolerance of combined drought and heat stress is associated with transpiration maintenance and water-soluble carbohydrates in wheat grains. Front. Plant Sci. 11:568693. DOI: 10.3389/fpls.2020.568693 Search in Google Scholar

Hiscox, J.D., Israelstam, G.F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany; 57: 1332-1334. Search in Google Scholar

Ibro, V., Bacu, A., Kaloshi, A., Coka, E., Kokojka, F. (2019). Drought tolerance and thiols molarity in seedlings of two Aegilops accessions. Albanian J. Agric. Sci.; (Special edition). International Conference “Challenges in Biotechnological and Environmental Approaches”, April 23 – 24, pg 13-19. Search in Google Scholar

Iqbal, M., Raja, N.I., Yasmeen, F., Hussain, M., Ejaz, M., et al. (2017). Impacts of Heat Stress on Wheat: A Critical Review. Adv Crop Sci Tech 5: 251. DOI: 10.4172/2329-8863.1000251 Search in Google Scholar

Khan, A., Ahmad, M., Ahmed, M., Iftikhar Hussain, M. (2020). Rising Atmospheric Temperature Impact on Wheat and Thermotolerance Strategies. Plants (Basel). 27; 10(1):43. DOI: 10.3390/plants10010043. PMID: 33375473; PMCID: PMC7823633. Search in Google Scholar

Khanzada, A., Feng, K., Wang, X., Cai, J., Malko, M.M., Samo, A., Hossain, Md. N., Jiang, D. (2021). Comprehensive evaluation of high-temperature tolerance induced by heat priming at early growth stages in winter wheat. Physiologia Plantarum, 2021. DOI: 10.1111/ppl.13759 Search in Google Scholar

Kokojka, F., Bacu, A., Shahini, Sh., Medha, Gj. (2021). Tribenuron-methyl treatment affects glutathione metabolization and other physiological processes in bread wheat. International Journal of Pest Management, DOI: 10.1080/09670874.2021.1916123. Search in Google Scholar

Lamaoui M, Jemo M, Datla R, Bekkaoui F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Front Chem. 6:26–30. DOI: 10.3389/fchem.2018.00026. Search in Google Scholar

Law, R.D., Crafts-Brandner, S.J. (1999). Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 120: 173–181. Search in Google Scholar

Liu, P., Guo, W., Jiang, Z., Pu, H., Feng, C., Zhu, X. (2011). Effects of high temperature after anthesis on starch granules in grains of wheat (Triticum aestivum L.). J Agric Sci.; 149(2):159-169. Search in Google Scholar

Mishra, D., Shekhar, Sh., Chakraborty, S., Chakraborty, N. (2018). Carboxylate clamp tetratricopeptide repeat (TPR) domain containing Hsp90 cochaperones in Triticeace: An insight into structural and functional diversification, Environmental and Experimental Botany, Volume 155, Pages 31-44, ISSN 0098-8472, https://doi.org/10.1016/j.envexpbot.2018.06.020. Search in Google Scholar

Mishra, D., Shekhar, Sh., Chakraborty, S., Chakraborty, N. (2021). High temperature stress responses and wheat: Impacts and alleviation strategies, Environmental and Experimental Botany, Volume 190, 104589, ISSN 0098-8472, https://doi.org/10.1016/j.envexpbot.2021.104589. Search in Google Scholar

Mishra, D., Shekhar, Sh., Agrawal, L., Chakraborty, S., Chakraborty, N. (2017). Cultivar-specific high temperature stress responses in bread wheat (Triticum aestivum L.) associated with physicochemical traits and defence pathways. Food Chem. 15; 221:1077-1087. DOI: 10.1016/j.foodchem.2016.11.053. Search in Google Scholar

Mohan D, Mamrutha HM, Tyagi BS. (2017). Weather conditions favouring wheat (Triticum aestivum L.) productivity in hot climate of central India and congenial environment of northwestern plains. Indian J Agric Sci. 87:278–281. [Google Scholar] Search in Google Scholar

Padam Bahadur Poudel and Mukti Ram Poudel. Heat Stress Effects and Tolerance in Wheat: A Review. (2020) J Biol Today’s World 2020; 9(3): 217. Search in Google Scholar

Pandey, A., Harohalli Masthigowda, M., Kumar, R., Pandey, G.C., Awaji, S.M., Singh, G., Pratap Singh, G. (2022). Physio-biochemical characterization of wheat genotypes under temperature stress. Physiol Mol Biol Plants. 29(1):131-143. DOI: 10.1007/s12298-022-01267-4. PMID: 36733838; PMCID: PMC9886710. Search in Google Scholar

Poudel, P.B. and Poudel, M.R. (2020). Heat Stress Effects and Tolerance in Wheat: A Review. Journal of Biology and Todays World, Review Article, Volume 9, Issue 3. ISSN - 2322-3308. Search in Google Scholar

Prasad, P.V.V., Boote, K.J., Allen, L.H., Sheehy, J.E., Thomas, J.M.G. (2006). Species, ecotype and cultivar diff erences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research 95: 398-411. Search in Google Scholar

Ribaudo, R., Gilman, M., Kingston, R.E., Choczynski, P. and Sacchi, N. (2001). Preparation of RNA from tissues and cells. Current Protocols in Immunology 3, 10.11.1–10.11.14 Search in Google Scholar

Roberts, E.H., Summerfield, R.J. (1987). Measurements and prediction of flowering in annual crops. In: Atherton JG (eds.), Manipulation of Flowering. Butterworth, London, pp: 17-50. Search in Google Scholar

Semenov, M.A., Shewry, P.R. (2011). Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci Rep. 1:66. DOI: 10.1038/srep00066. PMID: 22355585; PMCID: PMC3216553. Search in Google Scholar

Serrano, N., Ling, Y., Bahieldin, A. & Mahfouz, M.M. (2019). Thermopriming reprograms metabolic homeostasis to confer heat tolerance. Scientific Reports, Volume 9, Article number: 181. Search in Google Scholar

Sharma, D., Singh, R., Tiwari, R., Kumar, R., Gupta, V. (2019). Wheat Responses and Tolerance to Terminal Heat Stress: A Review. In: M Hasanuzzaman, K Nahar, M A Hossain (eds), Wheat Production in Changing Environments: Responses, Adaptation and Tolerance, 149-17 Search in Google Scholar

Sharma, Davinder, Mamrutha, H.M., Gupta, V.K., Tiwari, R., Singh, R. (2015). Association of SSCP variants of HSP genes with physiological and yield traits under Heat stress in wheat. Res Crop. 16(1):139-146. Search in Google Scholar

Sinclair T. R., Hammer G. L., Van Oosterom E. J. (2005). Potential yield and water-use efficiency benefits in sorghum from limited maximum transpiration rate. Funct. Plant Biol. 32 945–952. 10.1071/FP05047 [DOI] [PubMed] [Google Scholar] Search in Google Scholar

Wang, C., Brunner, I., Zong, S., and Li, M.H. (2019). The Dynamics of Living and Dead Fine Roots of Forest Biomes Across the Northern Hemisphere. Forests 10(11):953, DOI: 10.3390/f10110953 Search in Google Scholar

Wang, X., Xin, C., Cai, J., Zhou, Q., Dai, T., Cao, W., Jiang, D. (2016). Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat, Frontiers in Plant Science 7(e9514), DOI: 10.3389/fpls.2016.00501, License CC BY 4.0 Search in Google Scholar

Wang, X., Cai, J., Liu, F., Da, T., Cao, W., Wollenweber, B., Jiang, D. (2014). Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings. Plant Physiology and Biochemistry, Volume 74, Pages 185-192. Search in Google Scholar

Xiaofei Wei, Sha Guo, Baoluo Ma, Jairo A. Palta, Yongqing Ma, Pufang Li. (2024). Wheat yield improvement is associated with altered root systems during cultivar replacement. European Journal of Agronomy, Volume 154,127101, ISSN 1161-0301, https://doi.org/10.1016/j.eja.2024.127101. Search in Google Scholar

Yemm, E.W., Willis, A.J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochem J. 57(3):508-14. DOI: 10.1042/bj0570508. PMID: 13181867; PMCID: PMC1269789. Search in Google Scholar

Zhao, K., Tao, Y., Liu, M., Yang, D., Zhu, M., Ding, J., Zhu, X., Guo, W., Zhou, G., Li, C. (2022). Does temporary heat stress or low temperature stress similarly affect yield, starch, and protein of winter wheat grain during grain filling? Journal of Cereal Science, Volume 103, 103408, ISSN 0733-5210, https://doi.org/10.1016/j.jcs.2021.10340 Search in Google Scholar