Otwarty dostęp

Obtaining Metal Parts by Additive Manufacturing, as an Alternative to Traditional Manufacturing Methods – A Review


Zacytuj

Abel J., Scheithauer U., Janics T., Hampel S., Cano S., Müller-Köhn A., Günther A., Kukla C., Moritz T., Fused filament fabrication (FFF) of metal-ceramic components, Journal of Visualized Experiments, 2019(143), https://doi.org/10.3791/57693 (2019). Search in Google Scholar

AbouelNour Y., Gupta N., In-situ monitoring of sub-surface and internal defects in additive manufacturing: A review, Materials & Design, 222, 111063. https://doi.org/10.1016/J.MATDES.2022.111063 (2022). Search in Google Scholar

Bourell D.L., Perspectives on Additive Manufacturing, 46, 1-18, https://doi.org/10.1146/Annurev-Matsci-070115-031606 (2016). Search in Google Scholar

Burkhardt C., Freigassner P., Weber O., Imgrund P., Hampel S., Fused Filament Fabrication (FFF ) of 316 L Green Parts for the MIM process, Materials Science (2018). Search in Google Scholar

Cabrini M., Carrozza A., Lorenzi S., Pastore T., Testa C., Manfredi D., Fino P., Scenini F., Influence of surface finishing and heat treatments on the corrosion resistance of LPBF-produced Ti-6Al-4V alloy for biomedical applications, Journal of Materials Processing Technology, 308, 117730, https://doi.org/10.1016/J.JMATPROTEC.2022.117730 (2022). Search in Google Scholar

Cabrini M., Lorenzi S., Testa C., Carugo F., Pastore T., Manfredi D., Biamino S., Marchese G., Parizia S., Scenini F., Stress corrosion cracking of additively manufactured alloy 625, Materials, 14(20), 6115, https://doi.org/10.3390/MA14206115/S1 (2021). Search in Google Scholar

Carrozza A., Lorenzi S., Carugo F., Fest-Santini S., Santini M., Marchese G., Barbieri G., Cognini F., Cabrini M., Pastore T., A comparative analysis between material extrusion and other additive manufacturing techniques: Defects, microstructure and corrosion behavior in nickel alloy 625, Materials & Design, 225, 111545, https://doi.org/10.1016/J.MATDES.2022.111545 (2023). Search in Google Scholar

Dass A., Moridi A., State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design, Coatings 2019, Vol. 9, Page 418, 9(7), 418, https://doi.org/10.3390/COATINGS9070418 (2019). Search in Google Scholar

Dehghan-Manshadi A., Bermingham M.J., Dargusch M.S., StJohn D.H., Qian M., Metal injection moulding of titanium and titanium alloys: Challenges and recent development, Powder Technology, 319, 289-301, https://doi.org/10.1016/J.POWTEC.2017.06.053 (2017). Search in Google Scholar

de Leon Nope G., Wang G., Alvarado-Orozco J.M., Gleeson B., Role of Elemental Segregation on the Oxidation Behavior of Additively Manufactured Alloy 625, JOM, 74(4), 1698-1706, https://doi.org/10.1007/S11837-022-05200-8/METRICS (2022). Search in Google Scholar

Ebel T., Titanium MIM for manufacturing of medical implants and devices, Titanium in Medical and Dental Applications, 531-551, https://doi.org/10.1016/B978-0-12-812456-7.00024-X (2018). Search in Google Scholar

García C., Martín F., Herranz G., Berges C., Romero A., Effect of adding carbides on dry sliding wear behaviour of steel matrix composites processed by metal injection moulding, Wear, 414–415, 182-193, https://doi.org/10.1016/j.wear.2018.08.010 (2018). Search in Google Scholar

German R.M., Powder metallurgy science, Metal Powder Industries Federation, Princeton, N.J. (2nd Ed.) (1994). Search in Google Scholar

Gibson I., Rosen D., Stucker B., Khorasani M., Additive Manufacturing Technologies, Additive Manufacturing Technologies, https://doi.org/10.1007/978-3-030-56127-7 (2021). Search in Google Scholar

Gibson M.A., Mykulowycz N.M., Shim J., Fontana R., Schmitt P., Roberts A., Ketkaew J., Shao L., Chen W., Bordeenithikasem P., Myerberg J.S., Fulop R., Verminski M.D., Sachs E.M., Chiang Y.M., Schuh C.A., John Hart A., Schroers J., 3D printing metals like thermoplastics: Fused filament fabrication of metallic glasses, Materials Today, 21(7), 697-702, https://doi.org/10.1016/J.MATTOD.2018.07.001 (2018). Search in Google Scholar

Gill, S. S., Singh, J., Singh, R., & Singh, H. (2011), Metallurgical principles of cryogenically treated tool steels - A review on the current state of science, International Journal of Advanced Manufacturing Technology, 54(1–4), 59–82. https://doi.org/10.1007/s00170-010-2935-5 Search in Google Scholar

Gloeckle C., Konkol T., Jacobs O., Limberg W., Ebel T., Handge U.A., Processing of Highly Filled PolymerMetal Feedstocks for Fused Filament Fabrication and the Production of Metallic Implants, Materials, 13(19), 4413, https://doi.org/10.3390/ma13194413 (2020). Search in Google Scholar

Godec D., Cano S., Holzer C., Gonzalez-Gutierrez J., Optimization of the 3D Printing Parameters for Tensile Properties of Specimens Produced by Fused Filament Fabrication of 17-4PH Stainless Steel, Materials 2020, Vol. 13, Page 774, 13(3), 774, https://doi.org/10.3390/MA13030774 (2020). Search in Google Scholar

Gonzalez-Gutierrez J., Cano S., Schuschnigg S., Kukla C., Sapkota J., Holzer C., Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: A review and future perspectives, Materials 11(5). MDPI AG, https://doi.org/10.3390/ma11050840 (2018). Search in Google Scholar

Gonzalez-Gutierrez J., Godec D., Kukla C., Schlauf T., Burkhardt C., Holzer C., Shaping, debinding and sintering of steel components via fused filament fabrication, CIM 2017 Computer Integrated Manufacturing and High Speed Machining, Proceedings of the 16th International Scientific Conference on Production Engineering, 99-104 (2017). Search in Google Scholar

Gonzalez-Gutierrez J., Mandolini M., Prade P., Cicconi P., Carminati M., Quarto M., D’urso G., Giardini C., Maccarini G., Mechanical Characterization of AISI 316L Samples Printed Using Material Extrusion, Applied Sciences 2022, Vol. 12, Page 1433, 12(3), 1433, https://doi.org/10.3390/APP12031433 (2022). Search in Google Scholar

González-Gutiérrez J., Stringari G.B., Emri I., González-Gutiérrez J., Stringari G.B., Emri I., Powder Injection Molding of Metal and Ceramic Parts, Some Critical Issues for Injection Molding, 65-86, https://doi.org/10.5772/38070 (2012), Search in Google Scholar

Hamidi M.F.F.A., Harun W.S.W., Samykano M., Ghani S.A.C., Ghazalli Z., Ahmad F., Sulong A.B., A review of biocompatible metal injection moulding process parameters for biomedical applications, Materials Science and Engineering: C, 78, 1263-1276, https://doi.org/10.1016/J.MSEC.2017.05.016 (2017). Search in Google Scholar

Heaney D.F. (Ed.), Handbook of Metal Injection Molding (2nd ed.), Woodhead Publishing (2019). Search in Google Scholar

Herranz G., Control of carbon content in metal injection molding, Handbook of Metal Injection Molding (pp. 281-329). Elsevier, https://doi.org/10.1016/B978-0-08-102152-1.00016-7 (2019). Search in Google Scholar

Herranz G., Levenfeld B., Várez A., Effect of Residual Carbon on the Microstructure Evolution during the Sintering of M2 HSS Parts Shaping by Metal Injection Moulding Process, Materials Science Forum, 534-536, 353-356, https://doi.org/10.4028/www.scientific.net/msf.534-536.353 (2007). Search in Google Scholar

ISO/ASTM 52900:2021 - Additive manufacturing ‒General principles ‒Fundamentals and vocabulary. Retrieved 18 March 2023, from https://www.iso.org/standard/74514.html. Search in Google Scholar

Jauregi S., Fernandez F., Palma R.H., Martinez V., Urcola J.J., Influence of Atmosphere on Sintering of T15 and M2 Steel Powders, Metallurgical Transactions A, 23(A), 389-400 (1992). Search in Google Scholar

Karmuhilan M., Kumanan S., A Review on Additive Manufacturing Processes of Inconel 625, Journal of Materials Engineering and Performance, 31(4), 2583-2592, https://doi.org/10.1007/S11665-021-06427-3/TABLES/5 (2022). Search in Google Scholar

Kearns M., A review of the sintering behaviour of selected tool steels processed by MIM, Powder Injection Moulding International, 12(3), 89-98, www.pim-international.com (2018). Search in Google Scholar

Lu Z., Ayeni O.I., Yang X., Park H.Y., Jung Y.G., Zhang J., Microstructure and Phase Analysis of 3D-Printed Components Using Bronze Metal Filament, Journal of Materials Engineering and Performance, 29(3), 1650-1656, https://doi.org/10.1007/S11665-020-04697-X/METRICS (2020). Search in Google Scholar

Marchese G., Parizia S., Rashidi M., Saboori A., Manfredi D., Ugues D., Lombardi M., Hryha E., Biamino S., The role of texturing and microstructure evolution on the tensile behavior of heat-treated Inconel 625 produced via laser powder bed fusion, Materials Science and Engineering: A, 769, 138500, https://doi.org/10.1016/J.MSEA.2019.138500 (2020). Search in Google Scholar

Myers N.S., Heaney D.F., Metal injection molding (MIM) of high-speed tool steels, Handbook of Metal Injection Molding, Elsevier, pp. 525-534, https://doi.org/10.1016/B978-0-08-102152-1.00026-X (2019). Search in Google Scholar

Naranjo J.A., Berges C., Gallego A., Herranz G., A novel printable high-speed steel filament: Towards the solution for wear-resistant customized tools by AM alternative, Journal of Materials Research and Technology, 11, 1534-1547, https://doi.org/10.1016/J.JMRT.2021.02.001 (2021). Search in Google Scholar

Poulin J.R., Kreitcberg A., Terriault P., Brailovski V., Long fatigue crack propagation behavior of laser powder bed-fused inconel 625 with intentionally-seeded porosity, International Journal of Fatigue, 127, 144-156, https://doi.org/10.1016/J.IJFATIGUE.2019.06.008 (2019). Search in Google Scholar

Riaz A., Töllner P., Ahrend A., Springer A., Milkereit B., Seitz H., Optimization of composite extrusion modeling process parameters for 3D printing of low-alloy steel AISI 8740 using metal injection moulding feedstock, Materials & Design, 219, 110814, https://doi.org/10.1016/J.MATDES.2022.110814 (2022). Search in Google Scholar

Sander G., Tan J., Balan P., Gharbi O., Feenstra D.R., Singer L., Thomas S., Kelly R.G., Search in Google Scholar

Scully J.R., Birbilis N., Corrosion of Additively Manufactured Alloys: A Review, Corrosion, 74(12), 1318-1350, https://doi.org/10.5006/2926 (2018). Search in Google Scholar

Shahrubudin N., Lee T.C., Ramlan R., An Overview on 3D Printing Technology: Technological, Materials, and Applications, Procedia Manufacturing, 35, 1286-1296, https://doi.org/10.1016/J.PROMFG.2019.06.089 (2019). Search in Google Scholar

Spoerk M., Arbeiter F., Cajner H., Sapkota J., Holzer C., Parametric optimization of intra- and inter-layer strengths in parts produced by extrusion-based additive manufacturing of poly(lactic acid), Journal of Applied Polymer Science, 134(41), https://doi.org/10.1002/app.45401 (2017). Search in Google Scholar

Spoerk M., Gonzalez-Gutierrez J., Sapkota J., Schuschnigg S., Holzer C., Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication, Plastics, Rubber and Composites, 47(1), 17-24, https://doi.org/10.1080/14658011.2017.1399531 (2018). Search in Google Scholar

Thomas D., Gleadall A., Advanced metal transfer additive manufacturing of high temperature turbine blades, International Journal of Advanced Manufacturing Technology, 120(9–10), 6325-6335, https://doi.org/10.1007/S00170-022-09176-2/METRICS (2022). Search in Google Scholar

Thompson Y., Gonzalez-Gutierrez J., Kukla C., Felfer P., Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel, Additive Manufacturing, 30, 100861, https://doi.org/10.1016/J.ADDMA.2019.100861 (2019). Search in Google Scholar

Thompson Y., Zissel K., Förner A., Gonzalez-Gutierrez J., Kukla C., Neumeier S., Felfer P., Metal fused filament fabrication of the nickel-base superalloy IN 718, Journal of Materials Science, 57(21), 9541-9555, https://doi.org/10.1007/S10853-022-06937-Y/FIGURES/8 (2022). Search in Google Scholar

Wu G., Langrana N.A., Sadanji R., Danforth S., Solid freeform fabrication of metal components using fused deposition of metals, Materials & Design, 23(1), 97-105, https://doi.org/10.1016/S0261-3069(01)00079-6 (2002). Search in Google Scholar

eISSN:
2537-4869
Język:
Angielski