Zacytuj

Achten P.A.J., What a Difference a Hole Makes-The Commercial Value of the INNAS Hydraulic Transformer. In Proceedings of the Sixth Scandinavian International Conference on Fluid Power, Tampere, Finland, 26–28 May 1999, 873-886. Search in Google Scholar

Algar A., Codina E., Freire J., Experimental Study of 3D Movement in Cushioning of Hydraulic Cilinder, Energies 2017, 10, 746, 7-19, doi: 103390/en10030746.10.3390/en10060746 Search in Google Scholar

Algar A., Freire J., Castilla R., Codina E., Simulation of Hydraulic Cylinder Cushioning, Sustenability 2021, 13, 494, doi org/103390/su13020494.10.3390/su13020494 Search in Google Scholar

Botz O., Vegetable Oil-Based Hydraulic Fluid and Transmision Fluid, Patent Application Publication, US 2011/0195885 A1. Search in Google Scholar

Heybroek K., Vael G., Palmberg J.O., Towards Resistance-free Hydraulics in Construction Machinery, In Proceedings of the 8th International Fluid Power Conference, Dresden, Germany, 26–28 March 2012, 2, 123-138. Search in Google Scholar

Ketelsen S., Padovani D., Andersen T.O., Ebbesen M. K. and Schmidt L., Classification and Review of Pump-Controlled Differential Cylinder Drives, Energies 2019, 12, 1293, doi: 103390/en 12071293.10.3390/en12071293 Search in Google Scholar

Mendoza G., Igartua A., Fernandez-Diaz B., Urquiola F., Vivanco S., Arguizoniz Z., Vegetable Oils as Hydraulic Fluids for Agricultural Applications, Grasas y Aceites 62 (1), Enero-Marzo 29-38, 2011, doi: 103989/gya 056210.10.3989/gya.056210 Search in Google Scholar

Paeglis T., Karabeško P., Mieriņa I., Seržane R., Strēle M., Tupureina V., Jure M., Compositions of Hydraulic Fluids Based on Rapeseed Oil and its Derivatives, Engineering for Rural Development, Jelgava, 28-29.05.2009. Search in Google Scholar

Rose J., Ivantysynova M., A Study of Pump Control Systems for Smart Pumps, In Proceedings of the 52nd National Conference on Fluid Power, Las Vegas, NV, USA, 23–25 March 2011; 683-692. Search in Google Scholar

Schwartz C., de Negri V.J., Climaco V.J., Modeling and Analysis of an Auto-Ajustable Stroke and Cushioning Device for Hydraulic Cylinder, Journal of the Brazil Soc. of Mech. Sci and Eng., 27, 4, 415-426 (2005).10.1590/S1678-58782005000400010 Search in Google Scholar

Tiţa I., Mardare I., Husaru E.D., Theoretical Aspects Concerning Working Fluids in Hydraulic Systems, MATEC Web of Conferences, 112, 07014 (2017), doi: 10.1051/matecconf/20171120701, IManE&E 2017.10.1051/matecconf/201711207014 Search in Google Scholar

Tran X.B., Hafizah N., Yanada H., Modeling of Dynamic Friction Behaviors of Hydraulic Cylinder, Mechatronics, 22, 65-75 (2012).10.1016/j.mechatronics.2011.11.009 Search in Google Scholar

Tran X.B., Matsui A., Yanada H., Effect of Viscosity and Type of Oil on Dynamic Behavior of Friction of Hydraulic Cylinder, Trans Jpn Fluid Power Syst.Soc. 41, 2, 28-35 (2010).10.5739/jfps.41.28 Search in Google Scholar

Yanada H., Sekikava Y., Modeling of Dynamic Behaviors of Friction, Mechatronics, 18, 7, 330-339 (2008).10.1016/j.mechatronics.2008.02.002 Search in Google Scholar

Zhang Q., Hydraulic Linear Actuator Velocity Control Using a Feedforward-Plus-PID Control, International Journal of Flexible Automation and Integrated Manufacturing, 7, 3, 277-292 (1999). Search in Google Scholar

www.rscbio.com (accessed on January 2021). Search in Google Scholar

www.teresolve.com (accessed on January 2021). Search in Google Scholar

eISSN:
2537-4869
Język:
Angielski