Otwarty dostęp

An overview of statistical methods to detect and understand genotype-by-environment interaction and QTL-by-environment interaction


Zacytuj

Aastveit A.H., Mejza S. (1992): A selected bibliography on statistical methods for the analysis of genotype x environment interaction. Biuletyn Oceny Odmian, 24-25: 83-97.Search in Google Scholar

Alimi N.A., Bink M.C.A.M., Dieleman J.A., Nicolai M., Wubs M., Heuvelink E., Magan J.J., Voorrips R.E., Jansen J., Rodrigues P.C., Vercauteren A., Vuylsteke M., Song Y., Glasbey C., Barocsi A., Lefebvre V., Palloix A., van Eeuwijk F.A. (2012): Genetic and QTL analyses of yield and a set of physiological traits in pepper. Euphytica 190: 181–201.10.1007/s10681-012-0767-0Search in Google Scholar

Arciniegas-Alarcón S., García-Peña M., Krzanowski W.J., Dias C.T.S. (2014): An alternative methodology for imputing missing data in trials with genotype-by-environment interaction: some new aspects. Biometrical Letters 51: 75-88.10.2478/bile-2014-0006Search in Google Scholar

Arciniegas-Alarcón S., Peña M.G., Dias C.T.S., Krzanowski W.J. (2010): An alternative methodology for imputing missing data in trials with genotype-by-environment interaction. Biometrical Letters 47: 1-14.Search in Google Scholar

Annicchiarico P. (2009): Coping with and exploiting genotype-by-environment interactions. In: Ceccarelli, S., E.P., G. & Weltzien, E. (eds.) Plant breeding and farmer participation. Rome: FAO.Search in Google Scholar

Annicchiarico P. (2002): Genotype x Environment Interactions – Challenges and Opportunities for Plant Breeding and Cultivar Recommendations. FAO Plant Production and Protection Papers [Online].Search in Google Scholar

Baril C.P., Denis J.B., Wustman R., van Eeuwijk F.A. (1995): Analyzing Genotype by Environment Interaction in Dutch Potato Variety Trials Using Factorial Regression. Euphytica 82: 149-155.10.1007/BF00027061Search in Google Scholar

Bertin N., Martre P., Genard M., Quilot B., Salon C. (2010): Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits. Journal of Experimental Botany 61: 955-967.10.1093/jxb/erp37720038518Search in Google Scholar

Boer M.P., Wright D., Feng L.Z., Podlich D.W., Luo L., Cooper M., van Eeuwijk F.A. (2007): A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize. Genetics 177: 1801-1813.10.1534/genetics.107.071068214794217947443Search in Google Scholar

Bradu D., Gabriel K.R. (1978): Biplot as a Diagnostic Tool for Models of 2-Way Tables. Technometrics 20: 47-68.10.1080/00401706.1978.10489617Search in Google Scholar

Broman K.W., Sen S. (2009): A Guide to QTL Mapping with R/qtl, New York, Springer-Verlag.10.1007/978-0-387-92125-9Search in Google Scholar

Chenu K., Chapman S.C., Tardieu F., Mclean G., Welcker C., Hammer G.L. (2009): Simulating the Yield Impacts of Organ-Level Quantitative Trait Loci Associated With Drought Response in Maize: A “Gene-to-Phenotype” Modeling Approach. Genetics 183: 1507-1523.10.1534/genetics.109.105429278743519786622Search in Google Scholar

Chenu K., Chapman S.C., Hammer G.L., Mclean G., Salah H.B.H., Tardieu F. (2008): Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize. Plant Cell and Environment 31: 378-391.10.1111/j.1365-3040.2007.01772.x18088328Search in Google Scholar

Cooper M., Van Eeuwijk F.A., Hammer G.L., Podlich D.W., Messina C. (2009): Modeling QTL for complex traits: detection and context for plant breeding. Current Opinion in Plant Biology 12: 231-240.10.1016/j.pbi.2009.01.00619282235Search in Google Scholar

Crossa J. (1990): Statistical analyses of multilocation trials. Advances in Agronomy 44: 55-85.10.1016/S0065-2113(08)60818-4Search in Google Scholar

Denis J. B. (1988): Two-way analysis using covariables. Statistics 19: 123-132.10.1080/02331888808802080Search in Google Scholar

Finlay K.W., Wilkinson G.N. (1963): Analysis of Adaptation in a Plant-Breeding Programme. Australian Journal of Agricultural Research 14: 742-754.10.1071/AR9630742Search in Google Scholar

Gabriel K.R. (1971): Biplot Graphic Display of Matrices with Application to Principal Component Analysis. Biometrika 58: 453-467.10.1093/biomet/58.3.453Search in Google Scholar

Galwey N. (2006): Introduction to mixed modelling: beyond regression and analysis of variance, Chichester, England; Hoboken, NJ, Wiley.Search in Google Scholar

Gauch H.G. (1992): Statistical analysis of regional yield trials: AMMI analysis of factorial designs, Amsterdam, Elsevier.Search in Google Scholar

Gauch H.G. (1988): Model Selection and Validation for Yield Trials with Interaction. Biometrics 44: 705-715.10.2307/2531585Search in Google Scholar

Gauch H.G., Rodrigues P.C., Munkvold J.D., Heffner E.L., Sorrells M. (2011): Two New Strategies for Detecting and Understanding QTL x Environment Interactions. Crop Science 51: 96-113.10.2135/cropsci2010.04.0206Search in Google Scholar

Gauch H.G., Piepho H.P., Annicchiarico P. (2008): Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Science 48: 866-889.10.2135/cropsci2007.09.0513Search in Google Scholar

Gauch H.G., Zobel R.W. (1997): Identifying mega-environments and targeting genotypes. Crop Science 37: 311-326.10.2135/cropsci1997.0011183X003700020002xSearch in Google Scholar

Gauch H.G., Zobel R.W. (1990): Imputing Missing Yield Trial Data. Theoretical and Applied Genetics 79: 753-761.10.1007/BF0022424024226735Search in Google Scholar

Gollob H.F. (1968): A Statistical Model Which Combines Features of Factor Analysis and Analysis of Variance Techniques. Psychometrika 33: 73-115.10.1007/BF022896765239571Search in Google Scholar

Gusmão L. (1985): An Adequate Design for Regression-Analysis of Yield Trials. Theoretical and Applied Genetics 71: 314-319.10.1007/BF0025207324247400Search in Google Scholar

Hongyu K., García-Peña M., Araújo L.B., Dias C.T.S. (2014): Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction. Biometrical Letters 51: 89-102.10.2478/bile-2014-0007Search in Google Scholar

Ishii T., Hayashi T., Yonezawa K. (2010): Categorization of Quantitative Trait Loci by Their Functional Roles: QTL Analysis for Chemical Concentration in Seed Grains. Crop Science 50: 784-793.10.2135/cropsci2009.01.0015Search in Google Scholar

Josse J., van Eeuwijk F., Piepho H.-P., Denis J.B. (2014): Another look at Bayesian analysis of AMMI models for genotype-environment data. Journal of Agricultural, Biological, and Environmental Statistics 19: 240-257.10.1007/s13253-014-0168-zSearch in Google Scholar

Kang M.S., Gauch H.G. (1996): Genotype-by-Environment Interaction, Boca Raton, CRC Press.10.1201/9780367802226Search in Google Scholar

Letort V., Mahe P., Cournede P.H., De Reffye P., Courtois B. (2008): Quantitative genetics and functional-structural plant growth models: Simulation of quantitative trait loci detection for model parameters and application to potential yield optimization. Annals of Botany 101: 1243-1254.10.1093/aob/mcm197271026517766844Search in Google Scholar

Lourenço V., Rodrigues P.C., Pires A.M., Piepho H.-P. (2017)): A robust DF-REML framework for variance components estimation in genetic studies. Bioinformatics 33: 3584-3594.10.1093/bioinformatics/btx45729036274Search in Google Scholar

Malosetti M., Ribaut J.M., van Eeuwijk F.A. (2010): The analysis of multi-environment data: modeling genotype by environment and QTL by environment interaction. In: Monneveux P. & Ribaut J.M. (eds.) Drought phenotyping in crops: from theory to practice.Search in Google Scholar

Malosetti M., Voltas J., Romagosa I., Ullrich S.E., van Eeuwijk F.A. (2004): Mixed models including environmental covariables for studying QTL by environment interaction. Euphytica 137: 139-145.10.1023/B:EUPH.0000040511.46388.efSearch in Google Scholar

Mandel J. (1969): Partitioning of Interaction in Analysis of Variance. Journal of Research of the National Bureau of Standards Section B-Mathematical Sciences B 73: 309-&.10.6028/jres.073B.031Search in Google Scholar

Paderewski J., Rodrigues P.C. (2014): The usefulness of EM-AMMI to study the influence of missing data pattern and application to Polish post-registration winter wheat data. Australian Journal of Crop Science 8: 640–645.Search in Google Scholar

Paderewski J., Gauch H.G., Madry W., Drzazga T., Rodrigues P.C. (2011): Yield Response of Winter Wheat to Spatial Conditions Using AMMI and Cluster Analysis. Crop Science 51: 969-980.10.2135/cropsci2010.05.0278Search in Google Scholar

Patterson H.D., Thompson R. (1971): Recovery of Inter-Block Information When Block Sizes Are Unequal. Biometrika 58: 545-&.10.1093/biomet/58.3.545Search in Google Scholar

Pereira D., Rodrigues P.C., Mejza S., Mexia J.T. (2012a): A comparison between Joint Regression Analysis and the AMMI model: a case study with barley. Journal of Statistical Computation and Simulation 82: 193-207.10.1080/00949655.2011.615839Search in Google Scholar

Pereira D., Rodrigues P.C., Mejza I., Mejza S., Mexia J.T. (2012b): Analyzing genotypes by environment interaction by curvilinear regression. Scientia Agricola 69: 357-363.10.1590/S0103-90162012000600003Search in Google Scholar

Pereira D.G., Mexia J.T., Rodrigues P.C. (2007): Robustness of Joint Regression Analysis. Biometrical Letters,44: 105-128.Search in Google Scholar

Piepho H.P. (1997): Analyzing genotype-environment data by mixed models with multiplicative terms. Biometrics 53: 761-766.10.2307/2533976Search in Google Scholar

Quilot B., Genard M., Lescourret F., Kervella J. (2005): Simulating genotypic variation of fruit quality in an advanced peach x Prunus davidiana cross. Journal of Experimental Botany 56: 3071-3081.10.1093/jxb/eri30416234284Search in Google Scholar

Reymond M., Muller B., Tardieu F. (2004): Dealing with the genotypexenvironment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters. Journal of Experimental Botany 55: 2461-2472.10.1093/jxb/erh20015286140Search in Google Scholar

Reymond M., Muller B., Leonardi A., Charcosset A., Tardieu F. (2003): Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiology 131: 664-675.10.1104/pp.01383916684212586890Search in Google Scholar

Rodrigues P.C., Monteiro A., Lourenço V.M. (2016): A robust additive main effects and multiplicative interaction model for the analysis of genotype-by-environment data. Bioinformatics 32: 58-66.10.1093/bioinformatics/btv533Search in Google Scholar

Rodrigues P.C., Malosetti M., Gauch H.G., van Eeuwijk F.A. (2014): A weighted AMMI algorithm to study genotype-by-environment interaction and QTL-by-environment interaction. Crop Science 54: 1555-1570.10.2135/cropsci2013.07.0462Search in Google Scholar

Rodrigues P.C. (2012): New strategies to detect and understand genotype-by-environment interactions and QTL-by-environment interactions. PhD Thesis, Faculty of Sciences and Technology, Nova University of Lisbon, Lisboa, Portugal.Search in Google Scholar

Rodrigues P.C., Pereira D.G., Mexia J.T. (2011): A comparison between JRA and AMMI: the robustness with increasing amounts of missing data. Scientia Agricola 68: 679-686.10.1590/S0103-90162011000600012Search in Google Scholar

Romagosa I., van Eeuwijk F.A., Thomas W.T.B. (2009): Statistical analyses of genotype by environment data. In: Carena M.J. (ed.) Cereals. Springer, New York: 291-331.10.1007/978-0-387-72297-9_10Search in Google Scholar

Romagosa I., Ullrich S.E., Han F., Hayes P.M. (1996): Use of the additive main effects and multiplicative interaction model in QTL mapping for adaptation in barley. Theoretical and Applied Genetics 93: 30-37.10.1007/BF00225723Search in Google Scholar

Searle S.R. (1971): Linear models, New York, Wiley.Search in Google Scholar

Searle S.R., Casella G., Mcculloch C.E. (1992): Variance components, New York, Wiley.10.1002/9780470316856Search in Google Scholar

Spitters C.J.T. (1990): Crop growth models: their usefulness and limitations. Acta Horticulture 267: 349-368.10.17660/ActaHortic.1990.267.42Search in Google Scholar

Tardieu F. (2003): Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends in Plant Science 8: 9-14.10.1016/S1360-1385(02)00008-0Search in Google Scholar

van Eeuwijk F.A., Bustos-Kortsa D.V., Malosetti M. (2016): What Should Students in Plant Breeding Know About the Statistical Aspects of Genotype × Environment Interactions? Crop Science 56: 2119-2140.10.2135/cropsci2015.06.0375Search in Google Scholar

van Eeuwijk F.A., Bink M.C.A.M., Chenu K., Chapman S.C. (2010): Detection and use of QTL for complex traits in multiple environments. Current Opinion in Plant Biology 13: 193-205.10.1016/j.pbi.2010.01.001Search in Google Scholar

van Eeuwijk F.A., Malosetti M., Yin X.Y., Struik P.C., Stam P. (2005): Statistical models for genotype by environment data: from conventional ANOVA models to eco-physiological QTL models. Australian Journal of Agricultural Research 56: 883-894.10.1071/AR05153Search in Google Scholar

van Eeuwijk F.A., Denis J. B., Kang M.S. (1996): Incorporating additional information on genotypes and environments in models for two-way genotype by environment tables. In: Kang M.S. & Gauch H.G. (eds.) Genotype by Environment Interaction: New Perspectives. Boca Raton: CRC Press.10.1201/9781420049374.ch2Search in Google Scholar

van Eeuwijk F.A. (1995): Linear and Bilinear Models for the Analysis of Multi-Environment Trials. 1. An Inventory of Models. Euphytica 84: 1-7.10.1007/BF01677551Search in Google Scholar

van Ittersum M.K., Leffelaar P.A., van Keulen H., Kropff M.J., Bastiaans L., Goudriaan J. (2003): On approaches and applications of the Wageningen crop models. European Journal of Agronomy 18: 201-234.10.1016/S1161-0301(02)00106-5Search in Google Scholar

Verbeke G., Molenberghs G. (2009): Linear mixed models for longitudinal data, New York, Springer.Search in Google Scholar

Yan W., Kang M.S. (2003): GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists, Boca Raton, Fla., CRC Press.10.1201/9781420040371Search in Google Scholar

Yan W., Kang M.S. (2002): GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists, Boca Raton, Florida, CRC Press.10.1201/9781420040371Search in Google Scholar

Yang R.C., Crossa J., Cornelius P.L., Burgueno J. (2009): Biplot Analysis of Genotype x Environment Interaction: Proceed with Caution. Crop Science 49: 1564-1576.10.2135/cropsci2008.11.0665Search in Google Scholar

Yin X.Y., Chasalow S.D., Dourleijn C.J., Stam P., Kropff M.J. (2000): Coupling estimated effects of QTLs for physiological traits to a crop growth model: predicting yield variation among recombinant inbred lines in barley. Heredity 85: 539-549.10.1046/j.1365-2540.2000.00790.x11240620Search in Google Scholar

Yin X.Y., Struik P.C., Kropff M.J. (2004): Role of crop physiology in predicting gene-to-phenotype relationships. Trends in Plant Science 9: 426-432.10.1016/j.tplants.2004.07.00715337492Search in Google Scholar

eISSN:
1896-3811
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, Bioinformatics, other, Mathematics, Probability and Statistics, Applied Mathematics