Otwarty dostęp

Are exercise-induced changes of fatty acids associated with cardiac hypertrophy in athletes? A pilot study


Zacytuj

1. Børsheim E., Knardahl S., Høstmark A. T. (1999) Short-term effects of exercise on plasma very low density lipo-proteins (VLDL) and fatty acids. Med. Sci. Sports Exerc., 31(4): 522-530.10.1097/00005768-199904000-00005 Search in Google Scholar

2. Chrysohoou C., Metallinos G., Georgiopoulos G., Mendrinos D., Papanikolaou A., Magkas N., Pitsavos C., Vyssoulis G., Stefanadis C., Tousoulis D. (2016) Short term omega-3 polyunsaturated fatty acid supplementation induces favorable changes in right ventricle function and diastolic filling pressure in patients with chronic heart failure; A randomized clinical trial. Vascul. Pharmacol., 79: 43-50.10.1016/j.vph.2016.01.005 Search in Google Scholar

3. Conquer J.A., Roelfsema H., Zecevic J., Graham T.E., and Holub B.J. (2002) Effect of exercise on FA profiles in n-3 FA-supplemented and nonsupplemented premenopausal women. Lipids, 37(10): 947-951. DOI: 10.1007/s11745-006-0985-0.10.1007/s11745-006-0985-0 Search in Google Scholar

4. Cunha R.M., Arsa G., Neves E.B., Lopes L.C., Santana F., Noleto M.V., Rolim T.I., Lehnen A.M. (2016) Water aerobics is followed by short-time and immediate systolic blood pressure reduction in overweight and obese hypertensive women. J. Am. Soc. Hypertens., 10(7): 570-577.10.1016/j.jash.2016.05.002 Search in Google Scholar

5. De Caterina R. Basta G. (2001) n-3 Fatty acids and the inflammatory response – biological background. Eur. Heart J. Suppl., 3(suppl_D): D42-D49.10.1016/S1520-765X(01)90118-X Search in Google Scholar

6. De Las Fuentes L., Soto P.F., Cupps B.P., Pasque M.K., Herrero P., Gropler R.J., Waggoner A.D., Dávila-Román V.G. (2006) Hypertensive left ventricular hyper-trophy is associated with abnormal myocardial fatty acid metabolism and myocardial efficiency. J. Nucl. Cardiol., 13(3): 369-377.10.1016/j.nuclcard.2006.01.021 Search in Google Scholar

7. Devereux R.B. Reichek N. (1977) Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation, 55(4): p. 613-618.10.1161/01.CIR.55.4.613 Search in Google Scholar

8. Duda M.K., O’Shea K.M., Lei B., Barrows B.R., Azimzadeh A.M., McElfresh T.E., Hoit B.D., Kop W.J., Stanley W.C. (2007) Dietary supplementation with omega-3 PUFA increases adiponectin and attenuates ventricular remodeling and dysfunction with pressure overload. Cardiovasc. Res., 76(2): 303-310. DOI: 10.1016/j. cardiores.2007.07.002.10.1016/j.cardiores.2007.07.002 Search in Google Scholar

9. Evangelista F., Brum P., Krieger J. (2003) Duration-controlled swimming exercise training induces cardiac hypertrophy in mice. Braz. J. Med. Biol. Res., 36(12): 1751-1759.10.1590/S0100-879X2003001200018 Search in Google Scholar

10. Ghule A.E., Kandhare A.D., Jadhav S.S., Zanwar A.A., Bodhankar S.L. (2015) Omega-3-fatty acid adds to the protective effect of flax lignan concentrate in pressure overload-induced myocardial hypertrophy in rats via modulation of oxidative stress and apoptosis. Int. Immunopharmacol., 28(1): 751-763. DOI: 10.1016/j. intimp.2015.08.005.10.1016/j.intimp.2015.08.005 Search in Google Scholar

11. Griffin M.E., Marcucci M.J., Cline G.W., Bell K., Barucci N., Lee D., Goodyear L.J., Kraegen E.W., White M.F., Shulman G.I. (1999) Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes, 48(6): 1270-1274.10.2337/diabetes.48.6.1270 Search in Google Scholar

12. Horowitz J.F. (2003) Fatty acid mobilization from adi-pose tissue during exercise. Trends Endocrinol. Metab., 14(8): 386-392. DOI: 10.1016/s1043-2760(03)00143-7.10.1016/S1043-2760(03)00143-7 Search in Google Scholar

13. Ismail H.M. (2005) The role of omega-3 fatty acids in cardiac protection: an overview. Front. Biosci., 10: 1079-1088.10.2741/1601 Search in Google Scholar

14. Itani S.I., Ruderman N.B., Schmieder F., Boden G. (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α. Diabetes, 51(7): 2005-2011.10.2337/diabetes.51.7.200512086926 Search in Google Scholar

15. Itoh M., Suganami T., Satoh N., Tanimoto-Koyama K., Yuan X., Tanaka M., Kawano H., Yano T., Aoe S., Takeya M. (2007) Increased adiponectin secretion by highly purified eicosapentaenoic acid in rodent models of obesity and human obese subjects. Arterioscler. Thromb. Vasc. Biol., 27(9): p. 1918-1925.10.1161/ATVBAHA.106.13685317569885 Search in Google Scholar

16. Jalili T., Manning J., and Kim S. (2003) Increased trans-location of cardiac protein kinase C β2 accompanies mild cardiac hypertrophy in rats fed saturated fat. J. Nutr., 133(2): 358-361.10.1093/jn/133.2.35812566467 Search in Google Scholar

17. Kim O.Y., Jung Y.S., Cho Y., Chung J.H., Hwang G.S., Shin M.J. (2013) Altered heart and kidney phospholipid fatty acid composition are associated with cardiac hypertrophy in hypertensive rats. Clin. Biochem., 46(12): 1111-1117. DOI: 10.1016/j.clinbiochem.2013.04.008.10.1016/j.clinbiochem.2013.04.00823608354 Search in Google Scholar

18. Lennie T.A., Chung M.L., Habash D.L., Moser D.K. (2005) Dietary fat intake and proinflammatory cytokine levels in patients with heart failure. J. Card. Fail., 11(8): 613-618.10.1016/j.cardfail.2005.06.43416230265 Search in Google Scholar

19. Lundgrin E.L., Park M.M., Sharp J., Tang W.H., Thomas J.D., Asosingh K., Comhair S.A., DiFilippo F.P., Neumann D.R., Davis L., Graham B.B., Tuder R.M., Dostanic I., Erzurum S.C. (2013) Fasting 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography to detect metabolic changes in pulmonary arterial hypertension hearts over 1 year. Ann. Am. Thorac. Soc., 10(1): 1-9. DOI: 10.1513/AnnalsATS.201206-029OC.10.1513/AnnalsATS.201206-029OC396099123509326 Search in Google Scholar

20. Morgan D.R., Dixon L.J., Hanratty C.G., El-Sherbeeny N., Hamilton P.B., McGrath L.T., Leahey W.J., Johnston G.D., McVeigh G.E. (2006) Effects of dietary omega-3 fatty acid supplementation on endothelium-dependent vasodilation in patients with chronic heart failure. Am. J. Cardiol., 97(4): 547-551.10.1016/j.amjcard.2005.08.07516461054 Search in Google Scholar

21. Mougios V., Kouidi E., Kyparos A., Deligiannis A. (1998) Effect of exercise on the proportion of unsaturated fatty acids in serum of untrained middle aged individuals. Br. J. Sports Med., 32(1): 58-62.10.1136/bjsm.32.1.5817560569562166 Search in Google Scholar

22. Mozaffarian D., Appel L.J., Van Horn L. (2011) Components of a cardioprotective diet: new insights. Circulation, 123(24): 2870-2891. DOI: 10.1161/CIRCULATIONAHA.110.968735.10.1161/CIRCULATIONAHA.110.968735626129021690503 Search in Google Scholar

23. Neri Serneri G.G., Boddi M., Modesti P.A., Cecioni I., Coppo M., Padeletti L., Michelucci A., Colella A., Galanti G. (2001) Increased cardiac sympathetic activity and insulin-like growth factor-I formation are associated with physiological hypertrophy in athletes. Circ. Res., 89(11): 977-982.10.1161/hh2301.10098211717153 Search in Google Scholar

24. Neschen S., Morino K., Rossbacher J.C., Pongratz R.L., Cline G.W., Sono S., Gillum M., Shulman G.I. (2006) Fish oil regulates adiponectin secretion by a peroxisome proliferator-activated receptor-γ-dependent mechanism in mice. Diabetes, 55(4): 924-928.10.2337/diabetes.55.04.06.db05-098516567512 Search in Google Scholar

25. Nguyen S., Shao D., Tomasi L.C., Braun A., de Mattos A.B.M., Choi Y.S., Villet O., Roe N., Halterman C.R., Tian R., Kolwicz S.C., Jr. (2017) The effects of fatty acid composition on cardiac hypertrophy and function in mouse models of diet-induced obesity. J. Nutr. Biochem., 46: 137-142. DOI: 10.1016/j.jnutbio.2017.05.009.10.1016/j.jnutbio.2017.05.009551695028605665 Search in Google Scholar

26. Nikolaidis M.G. Mougios V. (2004) Effects of exercise on the fatty-acid composition of blood and tissue lipids. Sports Med., 34(15): 1051-1076.10.2165/00007256-200434150-0000415575795 Search in Google Scholar

27. Nilsson J., Ericsson M., Joibari M.M., Anderson F., Carlsson L., Nilsson S.K., Sjödin A., Burén J. (2016) A low-carbohydrate high-fat diet decreases lean mass and impairs cardiac function in pair-fed female C57BL/6J mice. Nutr. Metab. (Lond.), 13(1): 1-12.10.1186/s12986-016-0132-8511123827891164 Search in Google Scholar

28. Pepe S. McLennan P.L. (2007) (n-3) Long chain PUFA dose-dependently increase oxygen utilization efficiency and inhibit arrhythmias after saturated fat feeding in rats. J. Nutr., 137(11): 2377-2383.10.1093/jn/137.11.237717951473 Search in Google Scholar

29. Rahimi S., Khademvatani K., Zolfaghari M.R. (2018) Association of circular Klotho and insulin-like growth factor 1 with cardiac hypertrophy indexes in athlete and non-athlete women following acute and chronic exercise. Biochem. Biophys. Res. Commun., 505(2): 448-452.10.1016/j.bbrc.2018.09.13830269819 Search in Google Scholar

30. Rupp H., Rupp T.P., Alter P., Maisch B. (2010) Inverse shift in serum polyunsaturated and monounsaturated fatty acids is associated with adverse dilatation of the heart. Heart, 96(8): 595-598.10.1136/hrt.2009.17656019723686 Search in Google Scholar

31. Rupp H., Rupp T.P., Wagner D., Alter P., Maisch B. (2006) Microdetermination of fatty acids by gas chromatography and cardiovascular risk stratification by the “EPA+ DHA level”. Cardiovascular Benefits of Omega-3 Polyunsaturated Fatty Acids. IOS Press, Amsterdam: p. 47-79. Search in Google Scholar

32. Russo S.B., Baicu C.F., Van Laer A., Geng T., Kasiganesan H., Zile M.R., Cowart L.A. (2012) Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J. Clin. Investig., 122(11): 3919-3930.10.1172/JCI63888348444823023704 Search in Google Scholar

33. Serneri G.G., Modesti P.A., Boddi M., Cecioni I., Paniccia R., Coppo M., Galanti G., Simonetti I., Vanni S., Papa L., Bandinelli B., Migliorini A., Modesti A., Maccherini M., Sani G., Toscano M. (1999) Cardiac growth factors in human hypertrophy. Relations with myocardial contractility and wall stress. Circ. Res., 85(1): 57-67. DOI: 10.1161/01.res.85.1.57.10.1161/01.RES.85.1.5710400911 Search in Google Scholar

34. Shei R.-J., Lindley M.R., Mickleborough T.D. (2014) Omega-3 polyunsaturated fatty acids in the optimization of physical performance. Mil. Med., 179(suppl_11): 144-156.10.7205/MILMED-D-14-00160 Search in Google Scholar

35. Shimizu I. Minamino T. (2016) Physiological and pathological cardiac hypertrophy. J. Mol. Cell. Cardiol., 97: 245-262. DOI: 10.1016/j.yjmcc.2016.06.001.10.1016/j.yjmcc.2016.06.00127262674 Search in Google Scholar

36. Shimizu I. Minamino T. (2016) Physiological and pathological cardiac hypertrophy. J. Mol. Cell. Cardiol., 97: 245-262.10.1016/j.yjmcc.2016.06.001 Search in Google Scholar

37. Shudo Y., Taniguchi K., Takeda K., Sakaguchi T., Matsue H., Izutani H., Matsumiya G., Sawa Y. (2010) Assessment of regional myocardial wall stress before and after surgical correction of functional ischaemic mitral regurgitation using multidetector computed tomography and novel software system. Eur. J. Cardiothorac. Surg., 38(2): 163-170.10.1016/j.ejcts.2010.01.02920619218 Search in Google Scholar

38. Siddiqui R.A., Shaikh S.R., Kovacs R., Stillwell W., Zaloga G. (2004) Inhibition of phenylephrine-induced cardiac hypertrophy by docosahexaenoic acid. J. Cell. Biochem., 92(6): 1141-1159.10.1002/jcb.20135 Search in Google Scholar

39. Stebbins C.L., Maruoka Y., Longhurst J.C. (1986) Pros-taglandins contribute to cardiovascular reflexes evoked by static muscular contraction. Circ. Res., 59(6): 645-654.10.1161/01.RES.59.6.645 Search in Google Scholar

40. Sundström J., Lind L., Vessby B., Andrén B., Aro A., Lithell H.O. (2001) Dyslipidemia and an unfavorable fatty acid profile predict left ventricular hypertrophy 20 years later. Circulation, 103(6): 836-841.10.1161/01.CIR.103.6.836 Search in Google Scholar

41. Takahashi R., Okumura K., Asai T., Hirai T., Murakami H., Murakami R., Numaguchi Y., Matsui H., Ito M., and Murohara T. (2005) Dietary fish oil attenuates cardiac hypertrophy in lipotoxic cardiomyopathy due to systemic carnitine deficiency. Cardiovasc. Res., 68(2): p. 213-223.10.1016/j.cardiores.2005.05.018 Search in Google Scholar

42. Tepsic J., Vucic V., Arsic A., Blazencic-Mladenovic V., Mazic S., Glibetic M. (2009) Plasma and erythrocyte phospholipid fatty acid profile in professional basketball and football players. Eur. J. Appl. Physiol., 107(3): 359-365.10.1007/s00421-009-1131-5 Search in Google Scholar

43. van der Vusse G.J., van Bilsen M., Glatz J.F. (2000) Cardiac fatty acid uptake and transport in health and disease. Cardiovasc. Res., 45(2): 279-293.10.1016/S0008-6363(99)00263-1 Search in Google Scholar

44. Whyte G., George K., Sharma S., Firoozi S., Stephens N., Senior R., McKenna W. (2004) The upper limit of physiological cardiac hypertrophy in elite male and female athletes: the British experience. Eur. J. Appl. Physiol., 92(4): 592-597.10.1007/s00421-004-1052-215054661 Search in Google Scholar

45. Wilson J.R. Kapoor S.C. (1993) Contribution of pros-taglandins to exercise-induced vasodilation in humans. Am. J. Physiol., 265(1 Pt 2): p. H171-5. DOI: 10.1152/ajpheart.1993.265.1.H171.10.1152/ajpheart.1993.265.1.H1718342631 Search in Google Scholar

46. Yilmaz D.C., Buyukakilli B., Gurgul S., Rencuzogullari I. (2013) Adaptation of heart to training: a comparative study using echocardiography & impedance cardiography in male & female athletes. Indian J. Med. Res., 137(6): 1111. Search in Google Scholar

47. Zechner R., Strauss J.G., Haemmerle G., Lass A., Zimmermann R. (2005) Lipolysis: pathway under construction. Curr. Opin. Lipidol., 16(3): 333-340.10.1097/01.mol.0000169354.20395.1c15891395 Search in Google Scholar

48. Zhou L.-Y., Liu J.-P., Wang K., Gao J., Ding S.-L., Jiao J.-Q., Li P.-F. (2013) Mitochondrial function in cardiac hypertrophy. Int. J. Cardiol., 167(4): 1118-1125.10.1016/j.ijcard.2012.09.082 Search in Google Scholar

eISSN:
2080-2234
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Medicine, Basic Medical Science, other, Clinical Medicine, Public Health, Sports and Recreation, Physical Education