Otwarty dostęp

Feature extraction and gait classification in hip replacement patients on the basis of kinematic waveform data


Zacytuj

1. Afef B.B., Limam M. (2018) Ensemble feature selection for high dimensional data: a new method and a comparative study. Adv. Data Anal. Classif. 12(4): 937–952. Search in Google Scholar

2. Beaulieu M.L., Lamontagne M., Beaulé P.E. (2010) Lower limb biomechanics during gait do not return to normal following total hip arthroplasty. Gait & Posture 32(2): 269–273.10.1016/j.gaitpost.2010.05.007 Search in Google Scholar

3. Begg R., Kamruzzaman J. (2005) A machine learning approach for automated recognition of movement patterns using basic, kinetic and kinematic gait data. J. Biomech., 38(3): 401–408.10.1016/j.jbiomech.2004.05.002 Search in Google Scholar

4. Bennasar M., Hicks Y., Setchi R. (2015) Feature selection using Joint Mutual Information Maximisation. Expert Syst. Appl., 42(22): 8520–8532.10.1016/j.eswa.2015.07.007 Search in Google Scholar

5. Breiman L. (2001) Random Forests. Machine Learning 45: 5–32.10.1023/A:1010933404324 Search in Google Scholar

6. Bzdok D., Altman N., Krzywinski M. (2018) Statistics versus machine learning. Nature Methods 15(4): 233–234.10.1038/nmeth.4642 Search in Google Scholar

7. Cannas L.M., Dessì N., Pes B. (2013) Assessing similarity of feature selection techniques in high-dimensional domains. Pattern Recognit. Lett., 34(12): 1446–1453.10.1016/j.patrec.2013.05.011 Search in Google Scholar

8. Cappozzo A., Catani F., Della Croce U., Leardini A. (1995) Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin.l Biomech., (Bristol, Avon) 10(4): 171–178.10.1016/0268-0033(95)91394-T Search in Google Scholar

9. Carse B., Meadows B., Bowers R., Rowe P. (2013) Affordable clinical gait analysis: an assessment of the marker tracking accuracy of a new low-cost optical 3D motion analysis system. Physiother., 99(4): 347–351.10.1016/j.physio.2013.03.00123747027 Search in Google Scholar

10. Chan H., Yang M., Wang H., Zheng H., McClean S., Sterritt R., Mayagoitia R.E. (2013) Assessing Gait Patterns of Healthy Adults Climbing Stairs Employing Machine Learning Techniques. Int. J. Intell. Syst., 28(3): 257–270.10.1002/int.21568 Search in Google Scholar

11. Chopra S., Kaufman K.R. (2018) Effects of Total Hip Arthroplasty on Gait. In: Müller B. and Wolf S. (eds.) Handbook of Human Motion, Springer, Cham, pp. 1–15. DOI: 10.1007/978-3-319-30808-1_81-1.10.1007/978-3-319-30808-1_81-1 Search in Google Scholar

12. Dindorf C., Teufl W., Taetz B., Bleser G., Fröhlich M. (2020) Interpretability of Input Representations for Gait Classification in Patients after Total Hip Arthroplasty. Sensors, 20: 16.10.3390/s20164385 Search in Google Scholar

13. Eskofier B.M., Federolf P., Kugler P.F., Nigg B.M. (2013) Marker-based classification of young-elderly gait pattern differences via direct PCA feature extraction and SVMs. Comput. Methods Biomech. Biomed. Engin., 16(4): 435–442.10.1080/10255842.2011.624515 Search in Google Scholar

14. Figueiredo J., Santos C.P., Moreno J.C. (2018) Automatic recognition of gait patterns in human motor disorders using machine learning: A review. Med. Eng. Phys., 53: 1–12.10.1016/j.medengphy.2017.12.006 Search in Google Scholar

15. Foucher K.C. (2016) Gait abnormalities before and after total hip arthroplasty differ in men and women. J. Biomech., 49(14): 3582–3586.10.1016/j.jbiomech.2016.09.003 Search in Google Scholar

16. Głowiński S., Łosiński K., Kowiański P., Waśkow M., Bryndal A., Grochulska A. (2020) Inertial Sensors as a Tool for Diagnosing Discopathy Lumbosacral Pathologic Gait: A Preliminary Research. Diagnostics, (Basel, Switzerland) 10(6): 342. Search in Google Scholar

17. Horstmann, T., Listringhaus, R., Haase, G.-B., Grau, S., Mündermann, A. (2013) Changes in gait patterns and muscle activity following total hip arthroplasty: A six-month follow-up. Clinical biomechanics (Bristol, Avon) 28, 7: 762–769.10.1016/j.clinbiomech.2013.07.001 Search in Google Scholar

18. Hutchinson L., Schwartz J.B., Morton A.M., Davis I.S., Deluzio K.J., Rainbow M.J. (2018) Operator Bias Errors Are Reduced Using Standing Marker Alignment Device for Repeated Visit Studies. J. Biomech. Eng., 140(4).10.1115/1.4038358 Search in Google Scholar

19. Ilias S., Tahir N.M., Jailani R., Hasan C.Z.C. (2017) Linear Discriminant Analysis in Classifying Walking Gait of Autistic Children. In: 2017 European Modelling Symposium (EMS). IEEE, pp. 67–72. DOI: 10.1109/EMS.2017.22.10.1109/EMS.2017.22 Search in Google Scholar

20. Kalousis A., Prados J., Hilario M. (2007) Stability of feature selection algorithms: a study on high-dimensional spaces. Knowl. Inf. Syst., 12(1): 95–116.10.1007/s10115-006-0040-8 Search in Google Scholar

21. Kleemann R.U., Heller M.O., Stoeckle U., Taylor W.R., Duda G.N. (2003) THA loading arising from increased femoral anteversion and offset may lead to critical cement stresses. J. Orthop. Res., 21(5): 767–774.10.1016/S0736-0266(03)00040-8 Search in Google Scholar

22. Laroche D., Tolambiya A., Morisset C., Maillefert J.F., French R.M., Ornetti P., Thomas E. (2014) A classification study of kinematic gait trajectories in hip osteoarthritis. Comput. Biol. Med., 55: 42–48. Search in Google Scholar

23. Leardini A., Sawacha Z., Paolini G., Ingrosso S., Nativo R., Benedetti M.G. (2007) A new anatomically based protocol for gait analysis in children. Gait & Posture 26(4): 560–571.10.1016/j.gaitpost.2006.12.01817291764 Search in Google Scholar

24. Liu F.T., Ting K.M., Zhou Z.-H. (2012) Isolation-Based Anomaly Detection. ACM Trans. Knowl. Discov. Data, 6(1): 1–39.10.1145/2133360.2133363 Search in Google Scholar

25. Liu H., Yu L. (2005) Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering 17(4): 491–502. Search in Google Scholar

26. OECD. (2016) Health at a Glance: Europe 2016. State of Health in the EU Cycle. OECD Publishing, Paris. Search in Google Scholar

27. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D. (2011) Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res., 12: 2825–2830. Search in Google Scholar

28. Peng H., Long F., Ding C. (2005) Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8): 1226–1238.10.1109/TPAMI.2005.159 Search in Google Scholar

29. Perron M., Malouin F., Moffet H., McFadyen B.J. (2000) Three-dimensional gait analysis in women with a total hiparthroplasty. Clin. Biomech., (Bristol, Avon), 15(7): 504–515.10.1016/S0268-0033(00)00002-4 Search in Google Scholar

30. Phinyomark A., Petri G., Ibáñez-Marcelo E., Osis S.T., Ferber R. (2018) Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions. J. Med. Biol. Eng., 38(2): 244–260.10.1007/s40846-017-0297-2589745729670502 Search in Google Scholar

31. Rasch A., Dalén N., Berg H.E. (2010) Muscle strength, gait, and balance in 20 patients with hip osteoarthritis followed for 2 years after THA. Acta Orthop., 81(2): 183–188.10.3109/17453671003793204285215420367414 Search in Google Scholar

32. Seijo-Pardo B., Bolón-Canedo V., Alonso-Betanzos A. (2019) On developing an automatic threshold applied to feature selection ensembles. Inf. Fusion, 45: 227–245.10.1016/j.inffus.2018.02.007 Search in Google Scholar

33. Shakoor N., Sengupta M., Foucher K.C., Wimmer M.A., Fogg L.F., Block J.A. (2010) Effects of common foot-wear on joint loading in osteoarthritis of the knee. Arthritis Care Res., 62(7): 917–923.10.1002/acr.20165294027020191571 Search in Google Scholar

34. Teufl W., Taetz B., Miezal M., Lorenz M., Pietschmann J., Jöllenbeck T., Fröhlich M., Bleser G. (2019) Towards an Inertial Sensor-Based Wearable Feedback System for Patients after Total Hip Arthroplasty: Validity and Applicability for Gait Classification with Gait Kinematics-Based Features. Sensors, 19(22): 5006.10.3390/s19225006689146131744141 Search in Google Scholar

35. Thewlis D., Bishop C., Daniell N., Paul G. (2013) Next-Generation Low-Cost Motion Capture Systems Can Provide Comparable Spatial Accuracy to High-End Systems. J. Appl. Biomech., 29: 112–117. Search in Google Scholar

36. Wang Z., Bao H.-W., Hou J.-Z. (2019) Direct anterior versus lateral approaches for clinical outcomes after total hip arthroplasty: a meta-analysis. J. Orthop. Surg. Res., 14(1): 1–11.10.1186/s13018-019-1095-z639031230808382 Search in Google Scholar

37. Wong T.-T. (2015) Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit., 48(9): 2839–2846. Search in Google Scholar

eISSN:
2080-2234
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Medicine, Basic Medical Science, other, Clinical Medicine, Public Health, Sports and Recreation, Physical Education