Zacytuj

[1] Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D. D., “Review of Heat Transfer Enhancement Methods: Focus on Passive Methods using Swirl Flow Devices”, Renewable and Sustainable Energy Reviews, Vol. 49, pp. 444–469, 2015.10.1016/j.rser.2015.04.113 Search in Google Scholar

[2] Kishan, R., Singh, D., Sharma, A. K., “CFD Analysis of Heat Exchanger Models Design Using ANSYS Fluent”, International Journal of Mechanical Engineering and Technology, Vol.11, no. 2, pp. 1–9, 202010.34218/IJMET.11.2.2020.001 Search in Google Scholar

[3] Choi, S. U., Eastman, J. A., “Enhancing Thermal Conductivity of Fluids with Nanoparticles”, International Mechanical Engineering Congress and Exhibition, 1995. Search in Google Scholar

[4] Lee, S., Choi, S. S., Li, S. A., Eastman, J. A., “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles”, Journal of Heat Transfer, Vol. 121, no. 2, pp. 280–289, 1999.10.1115/1.2825978 Search in Google Scholar

[5] Sivakumar, A., Alagumurthi, N., Senthilvelan, T., “Experimental Investigation in Thermal Conductivity of CuO and Ethylene Glycol Nanofluid in a Serpentine-shaped Microchannel”, International Journal of Engineering Science and Technology, Vol. 6, no. 7, pp. 430, 2014. Search in Google Scholar

[6] Majeed, A. H., Abd, Y. H., “Performance of Heat Exchanger with Nanofluids”, Materials Science Forum, Vol. 1021, pp. 160–170, 2021.10.4028/www.scientific.net/MSF.1021.160 Search in Google Scholar

[7] Karimzadehkhouei, M., Sadaghiani, A. K., Motezakker, A. R., Akgönül, S., Ozbey, A., Şendur, M., Koşar, A., “Experimental and Numerical Investigation of Inlet Temperature Effect on Convective Heat Transfer of γ-Al2O3/Water Nanofluid Flows in Microtubes”, Heat Transfer Engineering, Vol. 40, no. 9-10, pp. 738–752, 2019.10.1080/01457632.2018.1442305 Search in Google Scholar

[8] Gheynani, A. R., Akbari, O. A., Zarringhalam, M., Shabani, G. A. S., Alnaqi, A. A., Goodarzi, M., Toghraie, D., “Investigating the Effect of Nanoparticles Diameter on Turbulent Flow and Heat Transfer Properties of Non-Newtonian Carboxymethyl Cellulose/CuO Fluid in a Microtube”, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 29, no. 5, pp. 1699–1723,. 201910.1108/HFF-07-2018-0368 Search in Google Scholar

[9] Rasheed, A. H., Alias, H., Salman, S. D., “Effects of Coil Pitch Spacing on Heat Transfer Performance of Nanofluid Turbulent Flow through Helical Microtube Heat Exchanger”, International Journal of Engineering & Technology, Vol. 7, pp. 356–360, 2018.10.14419/ijet.v7i4.14.27674 Search in Google Scholar

[10] Wen, D., Ding, Y., “Formulation of Nanofluids for Natural Convective Heat Transfer Applications”, International Journal of Heat and Fluid Flow, Vol. 26, no. 6, pp. 855–864, 2005.10.1016/j.ijheatfluidflow.2005.10.005 Search in Google Scholar

[11] Kumar, P., “A CFD Study of Heat Transfer Enhancement in Pipe Flow with Al2O3 Nanofluid”, International Journal of Mechanical and Mechatronics Engineering, Vol. 5, no. 9, pp. 1843–1847, 2011. Search in Google Scholar

[12] Danook, S. H., Jasim, Q. K., Hussein, A. M., “Nanofluid Convective Heat Transfer Enhancement Elliptical Tube inside the Circular Tube under Turbulent Flow”, Mathematical and Computational Applications, Vol. 23, no. 4, pp. 78, 2018.10.3390/mca23040078 Search in Google Scholar

[13] Madhesh, D., Kalaiselvam, S., “Experimental Study on the Heat Transfer and Flow Properties of Ag–Ethylene Glycol Nanofluid as a Coolant”, Heat and Mass Transfer, Vol. 50, no. 11, pp. 1597–1607, 2014.10.1007/s00231-014-1370-9 Search in Google Scholar

[14] Fule, P. J., Bhanvase, B. A., Sonawane, S. H., “Experimental Investigation of Heat Transfer Enhancement in Helical Coil Heat Exchangers using Water-based CuO Nanofluid”, Advanced Powder Technology, Vol. 28, no. 9, pp. 2288–2294, 2017.10.1016/j.apt.2017.06.010 Search in Google Scholar

[15] Doshmanziari, F. I., Zohir, A., Kharvani, H. R., Jalali-Vahid, D., Kadivar, M., “Characteristics of Heat Transfer and Flow of Aluminum Oxide/Water Nanofluid in a Spiral-Coil Tube for Turbulent Pulsating Flow”, Heat and Mass Transfer, Vol. 52, no. 7, pp. 1305–1320, 2016.10.1007/s00231-015-1651-y Search in Google Scholar

[16] Qi, C., Yang, L., Chen, T., Rao, Z., “Experimental Study on Thermo-Hydraulic Performances of TiO2-H2O Nanofluids in a Horizontal Elliptical Tube”, Applied Thermal Engineering, Vol. 129, pp. 1315–1324, 2018.10.1016/j.applthermaleng.2017.10.137 Search in Google Scholar

[17] Fabbri, G., “Optimum Profiles for Asymmetrical Longitudinal Fins in Cylindrical Ducts”, International Journal of Heat and Mass Transfer, Vol. 42, no. 3, pp. 511–523, 1999.10.1016/S0017-9310(98)00179-3 Search in Google Scholar

[18] Ouzzane, M., Galanis, N., “Numerical Analysis of Mixed Convection in Inclined Tubes with External Longitudinal Fins”, Solar Energy, Vol. 71, no. 3, pp. 199-211, 2001.10.1016/S0038-092X(01)00030-5 Search in Google Scholar

[19] Barba, A., Rainieri, S., Spiga, M., “Heat Transfer Enhancement in a Corrugated Tube”, International Communications in Heat and Mass Transfer, Vol. 29, no. 3, pp. 313–322, 2002.10.1016/S0735-1933(02)00321-4 Search in Google Scholar

[20] Muzychka, Y. S., Yovanovich, M. M., “Laminar Forced Convection Heat Transfer in the Combined Entry Region of Non-Circular Ducts”, Journal of Heat Transfer, Vol. 126, no. 1, pp. 54–61, 2004.10.1115/1.1643752 Search in Google Scholar

[21] Jarungthammachote, S., “Entropy Generation Analysis for Fully Developed Laminar Convection in Hexagonal Duct Subjected to Constant Heat Flux”, Energy, Vol. 35, no. 12, pp. 5374–5379, 2010.10.1016/j.energy.2010.07.020 Search in Google Scholar

[22] Schenk, J., Han, B. S., “Heat Transfer from Laminar Flow in Ducts with Elliptic Cross-Section”, Applied Scientific Research, Vol. 17, no. 2, pp. 96–114, 1967.10.1007/BF00419779 Search in Google Scholar

[23] Rao, S. S., Ramacharyulu, N. C. P., Krishnamurty, V. V. G., Laminar Forced Convection in Elliptic Ducts”, Applied Scientific Research, Vol. 21, no. 1, pp. 185–193, 1969.10.1007/BF00411606 Search in Google Scholar

[24] Parlak, Z., “Optimal Design of Wavy Microchannel and Comparison of Heat Transfer Characteristics with Zigzag and Straight Geometries”, Heat and Mass Transfer, Vol. 54, no. 11, pp. 3317–3328, 2018.10.1007/s00231-018-2375-6 Search in Google Scholar

[25] Rao, G. S., Sharma, K. V., Chary, S. P., Bakar, R. A., Rahman, M. M., Kadirgama, K., Noor, M. M., “Experimental Study on Heat Transfer Coefficient and Friction Factor of Al2O3 Nanofluid in a Packed Bed Column”, Journal of Mechanical Engineering and Sciences, Vol. 1, no. 1, pp. 1–15, 2011.10.15282/jmes.1.2011.1.0001 Search in Google Scholar

[26] Maiga, S. E. B., Palm, S. J., Nguyen, C. T., Roy, G., Galanis, N., “Heat Transfer Enhancement by using Nanofluids in Forced Convection Flows”, International Journal of Heat and Fluid Flow, Vol. 26, no. 4, pp. 530–546, 2005.10.1016/j.ijheatfluidflow.2005.02.004 Search in Google Scholar

[27] You, S. M., Kim, J. H., Kim, K. H., “Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer”, Applied Physics Letters, Vol. 83, no. 16, pp. 3374–3376, 2003.10.1063/1.1619206 Search in Google Scholar

[28] Sardarabadi, M., Passandideh-Fard, M., “Experimental and Numerical Study of Metal-Oxides/Water Nanofluids as a Coolant in Photovoltaic Thermal Systems (PVT)”, Solar Energy Materials and Solar Cells, Vol. 157, pp. 533–542, 2016.10.1016/j.solmat.2016.07.008 Search in Google Scholar

[29] Chamsa-Ard, W., Brundavanam, S., Fung, C. C., Fawcett, D., Poinern, G., “Nanofluid Types, Their Synthesis, Properties, and Incorporation Indirect Solar Thermal Collectors: A Review”, Nanomaterials, Vol. 7, no. 6, pp. 131, 2017.10.3390/nano7060131548577828561802 Search in Google Scholar

[30] Ali, H. M., Ali, H., Liaquat, H., Maqsood, H. T. B., Nadir, M. A., “Experimental Investigation of Convective Heat Transfer Augmentation for Car Radiator using ZnO–Water Nanofluids”, Energy, Vol. 84, pp. 317–324, 2015.10.1016/j.energy.2015.02.103 Search in Google Scholar

[31] Hussein, A. M., Bakar, R. A., Kadirgama, K., “Study of Forced Convection Nanofluid Heat Transfer in the Automotive Cooling System”, Case Studies in Thermal Engineering, Vol. 2, pp. 50–61, 2014.10.1016/j.csite.2013.12.001 Search in Google Scholar

[32] Rasheed, A. H., Alias, H. B., Salman, S. D., “Experimental and Numerical Investigations of Heat Transfer Enhancement in Shell and Helically Microtube Heat Exchanger using Nanofluids”, International Journal of Thermal Sciences, Vol. 159, pp. 106547, 2021.10.1016/j.ijthermalsci.2020.106547 Search in Google Scholar

[33] Ahmed, W., Chowdhury, Z. Z., Kazi, S. N., Johan, M. R., Akram, N., Oon, C. S., “Effect of ZnO-Water-Based Nanofluids from Sonochemical Synthesis Method on Heat Transfer in a Circular Flow Passage”, International Communications in Heat and Mass Transfer, Vol. 114, pp. 104591, 2020.10.1016/j.icheatmasstransfer.2020.104591 Search in Google Scholar

[34] Safir, N. H, Bin-Abdun, N. A., Razlin, Z. M., Amin, N. A. M., Voon, C. H., “Enhancement of Heat Transfer Properties for ZnO/Water Nanofluid in Heat Exchange Applications”, AIP Conference Proceedings, Vol. 2030, pp. 020010, 2018.10.1063/1.5066651 Search in Google Scholar

[35] Lahari, M. L. R. C., Sai, P. H. V. S. T., Swamy, K. S. N., Murthy, N. K., Sharma, K. V., “Investigation on Heat Transfer Properties of Water Based TiO2-ZnO Nanofluids”, Materials Science and Engineering, Vol. 455, pp. 012092, 2018.10.1088/1757-899X/455/1/012092 Search in Google Scholar

[36] Shahrul, I. M., Mahbubul, I. M., Saidur, R., Sabri, M. F. M., “Experimental Investigation on Al2O3–W, SiO2–W and ZnO–W Nanofluids and Their Application in a Shell and Tube Heat Exchanger”, International Journal of Heat and Mass Transfer, Vol. 97, pp. 547–558, 2016.10.1016/j.ijheatmasstransfer.2016.02.016 Search in Google Scholar

[37] Ali, H. M., Ali, H., Liaquat, H., Maqsood, H. T. B., Nadir, M. N., “Experimental Investigation of Convective Heat Transfer Augmentation for Car Radiator using ZnO–Water Nanofluids”, Energy, Vol. 84, pp. 317–324, 2015.10.1016/j.energy.2015.02.103 Search in Google Scholar

[38] Noorbakhsh, M., Ajarostaghi, S. S. M., Zaboli, M., Kiani, B., “Thermal Analysis of Nanofluids Flows in a Double Pipe Heat Exchanger with Twisted Tapes Insert on Both Sides”, Journal of Thermal Analysis and Calorimetry, pp. 1–12, 2021.10.1007/s10973-021-10738-x Search in Google Scholar

[39] Namburu, P. K., Das, D. K., Tanguturi, K. M., Vajjha, R. S., “Numerical Study of Turbulent Flow and Heat Transfer Characteristics of Nanofluids Considering Variable Properties”, International Journal of Thermal Sciences, Vol. 48, no. 2, pp. 290–302, 2009.10.1016/j.ijthermalsci.2008.01.001 Search in Google Scholar

[40] Rudyak, V. Y., Minakov, A. V., “Thermophysical Properties of Nanofluids”, Eur. Phys. J., Vol. 41, pp. 15, 2018.10.1140/epje/i2018-11616-929380078 Search in Google Scholar

[41] Nguyen, C. T., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., Mintsa, H. A., “Temperature and Particle-size Dependent Viscosity Data for Water-Based Nanofluids–Hysteresis Phenomenon”, International Journal of Heat and Fluid Flow, Vol. 28, no. 6, pp. 1492–1506, 2007.10.1016/j.ijheatfluidflow.2007.02.004 Search in Google Scholar

[42] Lu, W. Q., Fan, Q. M., “Study for the Particle’s Scale Effect on Some Thermophysical Properties of Nanofluids by a Simplified Molecular Dynamics Method”, Engineering Analysis with Boundary Elements, Vol. 32, no. 4, pp. 282–289, 2008.10.1016/j.enganabound.2007.10.006 Search in Google Scholar

[43] Pastoriza-Gallego, M. J., Casanova, C., Legido, J. A., Piñeiro, M. M., “CuO in Water Nanofluid: Influence of Particle Size and Polydispersity on Volumetric Behavior and Viscosity”, Fluid Phase Equilibria, Vol. 300, no. 1-2, pp. 188–196, 2011.10.1016/j.fluid.2010.10.015 Search in Google Scholar

[44] Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., Thompson, L. J., “Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles”, Applied Physics Letters, Vol. 78, no. 6, pp. 718–720., 200110.1063/1.1341218 Search in Google Scholar

[45] Chon, C. H., Kihm, K. D., Lee, S. P., Choi, S. U., “Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement”, Applied Physics Letters, Vol. 87, no. 15, pp. 153107, 2005.10.1063/1.2093936 Search in Google Scholar

[46] Karthikeyan, N., Philip, J., Raj, B., “Effect of Clustering on the Thermal Conductivity of Nanofluids”, Materials Chemistry and Physics, Vol. 109, no. 1, pp. 50–55, 2008.10.1016/j.matchemphys.2007.10.029 Search in Google Scholar

[47] Beck, M. P., Yuan, Y., Warrier, P., Teja, A. S., “The Effect of Particle Size on the Thermal Conductivity of Alumina Nanofluids”, Journal of Nanoparticle Research, Vol. 11, no. 5, pp. 1129–1136, 2009.10.1007/s11051-008-9500-2 Search in Google Scholar

[48] Yeganeh, M., Shahtahmasebi, N., Kompany, A., Goharshadi, E., Youssefi, A., Šiller, L., “Volume Fraction and Temperature Variations of the Effective Thermal Conductivity of Nanodiamond Fluids in Deionized Water”, International Journal of Heat and Mass Transfer, Vol. 53, pp. 3186–3192, 2010.10.1016/j.ijheatmasstransfer.2010.03.008 Search in Google Scholar

[49] Sundar, L. S., Singh, M. K., Sousa, A. C., “Investigation of Thermal Conductivity and Viscosity of Fe3O4 Nanofluid for Heat Transfer Applications”, International Communications in Heat and Mass Transfer, Vol. 44, pp. 7–14, 2013.10.1016/j.icheatmasstransfer.2013.02.014 Search in Google Scholar

[50] Li, C. H., Peterson, G. P., “Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)”, Journal of Applied Physics, Vol. 99, pp. 084314, 2006.10.1063/1.2191571 Search in Google Scholar

[51] Pryazhnikov, M., Minakov, A., Rudyak, V., Guzei, D., “Thermal Conductivity Measurements of Nanofluids”, International Journal of Heat and Mass Transfer, Vol. 104, pp. 1275–1282, 2017.10.1016/j.ijheatmasstransfer.2016.09.080 Search in Google Scholar

[52] Alias, H., Rasheed, A. H., Salman, S. D., “Enhancement of Nanofluid Heat Transfer in Elliptical Pipe and Helical Micro Tube Heat Exchanger”, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, Vol. 66, no. 1, pp. 53–63, 2020. Search in Google Scholar

[53] Ahmadi, K., Khanmohammadi, S., Khanmohammadi, S., Bahiraei, M., Bach, Q. V., “Heat Transfer Assessment of Turbulent Nanofluid Flow in a Circular Pipe Fitted with Elliptical-cut Twisted Tape Inserts”, Journal of Thermal Analysis and Calorimetry, pp. 1–14, 2020.10.1007/s10973-020-10338-1 Search in Google Scholar

[54] Qi, C., Chen, T., Wang, Y., Yang, L., “Experimental Study on the Thermo-Hydraulic Performance of Nanofluids in Diverse Axial Ratio Elliptical Tubes with a Built-in Turbulator”, Korean Journal of Chemical Engineering, Vol. 37, no. 9, pp. 1466-1481, 2020.10.1007/s11814-020-0566-6 Search in Google Scholar

[55] Chaurasia, P., Kumar, A., Yadav, A., Rai, P. K., Kumar, V., Prasad, L., “Heat Transfer Augmentation in Automobile Radiator using Al2O3–Water-Based Nanofluid”, SN Applied Sciences, Vol. 1, no. 3, pp. 1–7, 2019.10.1007/s42452-019-0260-7 Search in Google Scholar

[56] Ragueb, H., Mansouri, K., “Numerical Investigation of Laminar Forced Convection for Non-Newtonian Nanofluids Flowing Inside an Elliptical Duct under Convective Boundary Condition”, International Journal of Numerical Methods for Heat & Fluid Flow., Vol. 29, no. 1, pp. 334–364, 2019.10.1108/HFF-02-2018-0055 Search in Google Scholar

[57] Hussein, A. M., Bakar, R. A., Kadirgama, K., Sharma, K. V., “Heat Transfer Enhancement with the Elliptical Tube under Turbulent Flow TiO2-Water Nanofluid”, Thermal Science, Vol. 20, no. 1, pp. 89–97, 2016.10.2298/TSCI130204003H Search in Google Scholar

[58] Zheng, Z., Fletcher, D. F., Haynes, B. S., “Chaotic Advection in Steady Laminar Heat Transfer Simulations: Periodic Zigzag Channels with Square Cross-Sections”, International Journal of Heat and Mass Transfer, Vol. 57, no. 1, pp. 274–284, 2013.10.1016/j.ijheatmasstransfer.2012.10.029 Search in Google Scholar

[59] Zheng, Z., Fletcher, D. F., Haynes, B. S., “Laminar Heat Transfer Simulations for Periodic Zigzag Semicircular Channels: Chaotic Advection and Geometric Effects”, International Journal of Heat and Mass Transfer, Vol. 62, pp. 391–401, 2013.10.1016/j.ijheatmasstransfer.2013.02.073 Search in Google Scholar

[60] Ma, D. D., Xia, G. D., Li, Y. F., Jia, Y. T., Wang, J., “Effects of Structural Parameters on Fluid Flow and Heat Transfer Characteristics in a Microchannel with Offset Zigzag Grooves in the Sidewall”, International Journal of Heat and Mass Transfer, Vol. 101, pp. 427–435, 2016.10.1016/j.ijheatmasstransfer.2016.04.091 Search in Google Scholar

[61] Shi, H., Raimondi, N. D. M., Fletcher, D. F., Cabassud, M., Gourdon, C., “Numerical Study of Heat Transfer in Square Millimetric Zigzag Channels in the Laminar Flow Regime”, Chemical Engineering and Processing-Process Intensification, Vol. 144, pp. 107624, 2019.10.1016/j.cep.2019.107624 Search in Google Scholar

[62] Afshari, E., Ziaei-Rad, M., Dehkordi, M. M., “Numerical Investigation on a Novel Zigzag-Shaped Flow Channel Design for Cooling Plates of PEM Fuel Cells”, Journal of the Energy Institute, Vol. 90, no. 5, pp. 752–763, 2017.10.1016/j.joei.2016.07.002 Search in Google Scholar

[63] Karmo, D., Ajib, S., Al Khateeb, A., “A New Method for Designing an Effective Finned Heat Exchanger”, Applied Thermal Engineering, Vol. 51, no. 1–2, pp. 539–550, 2013.10.1016/j.applthermaleng.2012.09.042 Search in Google Scholar

[64] Nuntadusit, C., Piya, I., Wae-hayee, M., Eiamsa-ard, S., “Heat Transfer Characteristics in a Channel Fitted with Zigzag-Cut Baffles”, Journal of Mechanical Science and Technology, Vol. 29, no. 6, pp. 2547–2554, 2015.10.1007/s12206-015-0552-9 Search in Google Scholar

[65] Toghraie, D., Abdollah, M. M. D., Pourfattah, F., Akbari, O. A., Ruhani, B., “Numerical Investigation of Flow and Heat Transfer Characteristics in Smooth, Sinusoidal, and Zigzag-Shaped Microchannel with and without Nanofluid”, Journal of Thermal Analysis and Calorimetry, Vol. 131, no. 2, pp. 1757–1766, 2018.10.1007/s10973-017-6624-6 Search in Google Scholar

[66] Ajeel, R. K., Salim, W. I., Hasnan, K., “Thermal and Hydraulic Characteristics of Turbulent Nanofluids Flow in Trapezoidal-Corrugated Channel: Symmetry and Zigzag-Shaped”, Case Studies in Thermal Engineering, Vol. 12, pp. 620–635, 2018.10.1016/j.csite.2018.08.002 Search in Google Scholar

[67] Zheng, Z., Fletcher, D. F., Haynes, B. S., “Transient Laminar Heat Transfer Simulations in Periodic Zigzag Channels”, International Journal of Heat and Mass Transfer, Vol. 71, pp. 758–768, 2014.10.1016/j.ijheatmasstransfer.2013.12.056 Search in Google Scholar