This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
I. Belovas, M. Sabaliauskas, L. Kuzma, Series with binomial-like coefficients for the investigation of fractal structures associated with the Riemann zeta function, Fractal and fractional, 6(6:300), 1–21, (2022). https://doi.org/10.3390/fractalfract6060300Search in Google Scholar
H. Cohen, High precision computation of Hardy-Littlewood constants, 1998 (preprint), https://oeis.org/A221712/a221712.pdfSearch in Google Scholar
K. Fischer, The Zetafast algorithm for computing zeta functions, arXiv 2017, https://arxiv.org/abs/1703.01414Search in Google Scholar
C.-E. Fröberg, On the prime zeta function, Nordisk Tidskr. Informations-behandling (BIT), 8(3): 187-202 (1968). https://doi.org/10.1007/BF01933420Search in Google Scholar
E. Landau, A. Walfisz, Über die Nichfortsetzbarkeit einiger durch Dirichletsche Reihen definierter Funktionen, Rend. Circ. Math. Palermo, 44: 82–86 (1920).Search in Google Scholar
E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 1986, 2nd Edition, Oxford.Search in Google Scholar
I. Belovas, R. Čepaitytė, M. Sabaliauskas, Prime Zeta Zeros, 2024. https://github.com/akatasis/prime-zeta-zerosSearch in Google Scholar