1. bookTom 30 (2022): Zeszyt 1 (February 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1844-0835
Pierwsze wydanie
17 May 2013
Częstotliwość wydawania
1 raz w roku
Języki
Angielski
access type Otwarty dostęp

On the Upper Bound of the Third Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function

Data publikacji: 12 Mar 2022
Tom & Zeszyt: Tom 30 (2022) - Zeszyt 1 (February 2022)
Zakres stron: 75 - 89
Otrzymano: 30 Dec 2020
Przyjęty: 28 May 2021
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1844-0835
Pierwsze wydanie
17 May 2013
Częstotliwość wydawania
1 raz w roku
Języki
Angielski
Abstract

In the present paper we introduce a new class of analytic functions f in the open unit disk normalized by f(0) = f(0)1 = 0, associated with exponential functions. The aim of the present paper is to investigate the third-order Hankel determinant H3(1) for this function class and obtain the upper bound of the determinant H3(1).

Keywords

MSC 2010

[1] Bieberbach, L.:Über die Koeffizienten derjenigen Potenzreihein welche eine schlichte Abbildung des Einheitskreises veritteln, Reimer in Komm: Berlin, Germany, (1916). Search in Google Scholar

[2] De Branges, L.: A proof of the Bieberbach conjecture. Acta Math. 154 (1), 137–152 (1985).10.1007/BF02392821 Search in Google Scholar

[3] Cho, N.E., Kumar, V., Kumar, S.S., Ravichandran, V.: Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 45, 213–232 (2019). Search in Google Scholar

[4] Dienes, P.: The Taylor Series: An Introduction to the Theory of Functions of a Complex Variable. NewYork-Dover: Mineola, NY, USA, (1957). Search in Google Scholar

[5] Duren, P. L.: Univalent Functions. vol. 259 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, (1983). Search in Google Scholar

[6] Ehrenborg, R.: The Hankel determinant of exponential polynomials. Amer. Math. Monthly, 107, 557–560 (2000).10.1080/00029890.2000.12005236 Search in Google Scholar

[7] Fekete, M., Szegö, G.: Eine Benberkung uber ungerada Schlichte funktionen. J. London Math. Soc. 8, 85–89 (1933). Search in Google Scholar

[8] Janowski, W.: Extremal problems for a family of functions with positive real part and for some related families. Annales Polonici Mathematici. 23, 159-177 (1970).10.4064/ap-23-2-159-177 Search in Google Scholar

[9] Keogh, F.R., Merkes, E.P.: A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 20, 8-12 (1969). Search in Google Scholar

[10] Libera R. J., Złotkiewicz E. J.: Early coefficients of the inverse of a regular convex function. Proc. Amer. Math. Soc. 85(2), 225-230 (1982). Search in Google Scholar

[11] Libera R. J., Złotkiewicz E. J.: Coefficient bounds for the inverse of a function with derivative in 𝒫. Proc. Amer. Math. Soc. 87(2), 251-257 (1983). Search in Google Scholar

[12] Ma, W., Minda. D.: A unified treatment of some special classes of univalent functions. Proceedings of the International Conference on Complex Analysis at the Nankai Institute of Mathematics, Tianjin, pp. 157-169 (1992). Search in Google Scholar

[13] Mendiratta, R., Nagpal, S., Ravichandran, V.: On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 38, 365–386 (2015). Search in Google Scholar

[14] Miller, S.S., Mocanu, P.T.: Differential Subordination. Theory and Applications. Pure and Applied Mathematics, Marcel Dekker Inc., p. 225 (2000).10.1201/9781482289817 Search in Google Scholar

[15] Noonan, J. W., Thomas, D. K.: On the second Hankel determinant of areally mean p-valent functions. Trans. Amer. Math. Soc. 223(2), 337–346 (1976). Search in Google Scholar

[16] Noor, K. I.: On analytic functions related with function of bounded boundary rotation. Comment. Math. Univ. St. Pauli. 30(2), 113–118 (1981). Search in Google Scholar

[17] Noor, K. I.: Hankel determinant problem for the class of function with bounded boundary rotation. Rev. Roum. Math. Pures Et Appl. 28, 731–739 (1983). Search in Google Scholar

[18] Noor, K. I., Al-Bany, S. A.: On Bazilevic functions. Int. J. Math. Math. Sci. 10(1), 79–88 (1987). Search in Google Scholar

[19] Noor, K. I.: Higer order close-to-convex functions. Math. Japon. 37(1), 1–8 (1992). Search in Google Scholar

[20] Padmanabhan, K.S., Parvatham, R.: Some applications of differential subordination. Bull. Aust. Math. Soc. 32, 321-330 (1985). Search in Google Scholar

[21] Pommerenke, C., Jensen, G.: Univalent Functions. Vandenhoeck and Ruprecht: Gottingen, Germany, (1975). Search in Google Scholar

[22] Pommerenke, C.: On the coefficients and Hankel determinant of univalent functions. J. Lond. Math. Soc. 41, 111-112 (1966). Search in Google Scholar

[23] Shanmugam, T.N.: Convolution and differential subordination. Int. J. Math. Math. Sci. 12, 333-340 (1989). Search in Google Scholar

[24] Sókol, J., Stankiewicz, J.: Radius of convexity of some subclasses of strongly starlike functions. Zeszyty Naukowe/Oficyna Wydawnicza al. Powstanców Warszawy. 19, 101–105 (1996). Search in Google Scholar

[25] Srivastava, H.M., Owa, S. (Eds.): Current Topics in Analytic Function Theory, World Scientific Publishing Company, London, UK. (1992).10.1142/1628 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo