Zacytuj

[1] P. Biler and T. Nadzieja. A class of nonlocal parabolic problems occurring in statistical mechanics. Colloq. Math., 66:131-145, 1993.10.4064/cm-66-1-131-145Search in Google Scholar

[2] P. Biler and T. Nadzieja. Global and exploding solutions in a model of self-gravitating systems. Preprint 2002.10.1016/S0034-4877(03)90013-9Search in Google Scholar

[3] J.T. Bonner. The cellular slime molds. Princeton University Press,Princeton, New Jersey, second edition., 1967.10.1515/9781400876884Search in Google Scholar

[4] M.A.J. Chaplain. Avascular growth, angiogenesis and vascular growth in solid tumors : the mathematical modelling of the stages of tumor development. Math. Comput. Modelling, 23:47-87, 1996.Search in Google Scholar

[5] S. Childress and J.K. Percus. Nonlinear aspects of chemotaxis. Math. Biosci., 66:217-237, 1981.10.1016/0025-5564(81)90055-9Search in Google Scholar

[6] L. Corrias M.P. Biler and J. Dolbeault. Large mass self-similar solutions of the parabolic-parabolic kellersegel model of chemotaxis. J. Math. Biol., 2010.Search in Google Scholar

[7] A.F. Filipov. Differential equation with discontinous right-hand side. Trans. Amer. Math. Soc., 42:199-231, 1964.10.1090/trans2/042/13Search in Google Scholar

[8] J.M. Greenberg and W. Alt. Stability results for a diffusion equation with functional drift approximating a chemotaxis model. Trans. Amer. Math. Soc., 300:235-258, 1987.10.1090/S0002-9947-1987-0871674-4Search in Google Scholar

[9] E. Hopf. The partial differential equation ut +uuxx = μuuxx. Com. Pur. Appl. Math., 13:201-230, 1950.10.1002/cpa.3160030302Search in Google Scholar

[10] D. Horstmann. From 1970 until present: the keller-segel model in chemotaxis and its consequences. Max-Planck-Institut Preprint n.3., 2003.Search in Google Scholar

[11] E.F. Keller and L.A. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol., 26:399-415, 1970.10.1016/0022-5193(70)90092-5Search in Google Scholar

[12] E.F. Keller and L.A. Segel. Model for chemotaxis. J. Theor. Biol., 30:225-234, 1971.10.1016/0022-5193(71)90050-6Search in Google Scholar

[13] E.F. Keller and L.A. Segel. Travelling bands of chemotactic bacteria, a theoretical analysis. J. Theor. Biol., 30:235-248, 1971.10.1016/0022-5193(71)90051-8Search in Google Scholar

[14] Y. Naito. Asymptotically self-similar solutions for the parabolic system modelling chemotaxis. Banach Center Publ. Polish Acad. Sci., Warsaw, 74:149-160, 2006.10.4064/bc74-0-9Search in Google Scholar

[15] K.J. Painter T. Hillen. A user’s guide to PDE models for chemotaxis. J. Math. Biol., 58:183-217, 2009.10.1007/s00285-008-0201-3Search in Google Scholar

[16] C.S. Patlak. Random walk with persistence and external bias. Bull. ofMath. Biophys., 15:311-338, 1953.10.1007/BF02476407Search in Google Scholar

[17] B. Perthame L. Corrias and H. Zaag. A chemotaxis model motivated by angiogenesis. C. R. Acad. Sci. Paris, Ser. I, 336:141-146, 2003.10.1016/S1631-073X(02)00008-0Search in Google Scholar

[18] M. Rascle and C. Ziti. Finite time blow-up in some models of chemotaxis. J. Math. Biol., 33:388-414, 1995.10.1007/BF001763797714415Search in Google Scholar

[19] C. Ziti. R´esolution numrique d’un syst`eme non strictement hyperboliquemod´elisant le comportement d’une population bact´erienne. PhD thesis, C.R.A.S., 1994.Search in Google Scholar

eISSN:
1844-0835
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Mathematics, General Mathematics