Otwarty dostęp

Entropy generation analysis in a gasket plate heat exchanger using non-spherical shape of alumina boehmite nanoparticles


Zacytuj

[1]. A.A. Neagu, C.I. Koncsag, Model validation for the heat transfer in gasket plate heat exchangers working with vegetable oils, Processes 10 (2022) 102. Doi: 10.3390/pr1001010210.3390/pr10010102 Search in Google Scholar

[2]. A.A. Neagu, C.I. Koncsag, A. Barbulescu, E. Botez, Estimation of pressure drop in gasket plate heat exchangers, Ovidius University Annals of Chemistry 27 (2016) 62-72. Doi: 10.1515/auoc-2016-001110.1515/auoc-2016-0011 Search in Google Scholar

[3]. J. Skocilas, L. Palaziuk, CFD Simulation of the Heat Transfer Process in a Chevron Plate Heat Exchanger Using the SST Turbulence Model., Czech Technical University in Prague, Acta Polytechnica 55 (2015) 267–274. Doi: 10.14311/AP.2015.55.026710.14311/AP.2015.55.0267 Search in Google Scholar

[4]. É. Nogueira, Efficacy of the Number of Plates, Fluid Flow rate and Volume Fractions of Aluminum Oxide Nanoparticles on Thermal Performance of Gasket Plate Heat Exchanger, International Journal of Engineering Research Updates 02 (2022) 025–038. Doi: 10.53430/ijeru.2022.2.1.002710.53430/ijeru.2022.2.1.0027 Search in Google Scholar

[5]. K. Bhupal, N. Singh Shalendra, Hydraulic and thermal studies on a chevron type plate heat exchanger, Thermal Science 22 (2018) 2759-2770. Doi: 10.2298/TSCI160324312K10.2298/TSCI160324312K Search in Google Scholar

[6]. L. Tovazhnyanskyy, J.J. Klemeš, P. Kapustenko, O. Arsenyeva, O. Perevertaylenko, P. Arsenyev, Optimal design of welded plate heat exchanger for ammonia synthesis column: an experimental study with mathematical optimization, Energies 13 (2020) 2847. Doi: 10.3390/en1311284710.3390/en13112847 Search in Google Scholar

[7]. M. A. Jamil, T.S. Goraya, H. Yaqoob, K.C. Ng, M.W. Shahzad, S.M. Zubair, Exergoeconomic and normalized sensitivity analysis of plate heat exchangers: a theoretical framework with application, IntechOpen, Heat Exchangers Ed. L. Castro Gomez, V.E. Velazquez Flores, M. Navarrete Procopio, pp. 1-22 (2021). Doi: 10.5772/intechopen.9973610.5772/intechopen.99736 Search in Google Scholar

[8]. D.H. Nguyen, K.M. Kim, T.T. Nguyen Vo, G.H. Shim, J.H. Kim, H.S. Ahn, Improvement of thermal-hydraulic performance of plate heat exchanger by electroless nickel, copper and silver plating, Case Studies in Thermal Engineering 23 (2021) 100797. Doi: 10.1016/j.csite.2020.10079710.1016/j.csite.2020.100797 Search in Google Scholar

[9]. M. Monfared, A. Shahsavar, M. R. Bahrebar, Second law analysis of turbulent convection flow of boehmite alumina nanofluid inside a double- pipe heat exchanger considering various shapes for nanoparticle, Journal of Thermal Analysis and Calorimetry 135 (2019) 1521–1532. Doi: 10.1007/s10973-018-7708 Search in Google Scholar

[10]. S. Almurtaji, N. Ali, J.A. Teixeira, A. Addali, On the role of nanofluids in thermal-hydraulic performance of heat exchangers - A review, Nanomaterials 10 (2020) 734. Doi: 10.3390/nano1004073410.3390/nano10040734722189432290469 Search in Google Scholar

[11]. E.V. Timofeeva, J.L. Routbort, D. Singh, Particle shape effects on thermophysical properties of alumina nanofluids, Journal of Applied Physics 106 (2009) 014304. Doi: 10.1063/1.315599910.1063/1.3155999 Search in Google Scholar

[12]. O.I. Matsegora, J.J. Klemes, O.P. Arsenyeva, P.O. Kapustenko, S.K. Kusakov, V.V. Zorenko, The effect of plate corrugations geometry on performance of plate heat exchangers subjected to fouling, Chemical Engineering Transactions 76 (2019) 277-282. Doi: 10.3303/CET1976047 Search in Google Scholar

[13]. A. Warlo, B. Nieborg, H. Fugmann, M. Altenberend, L. Schnabel, K. Conzelmann, M. Mathieu, A. Schwärzler, Experimental Characterization of Fouling in Context of Heat Exchanger Development, Heat Exchanger Fouling and Cleaning (2019) Published online www.heatexchanger-fouling.com. Search in Google Scholar

[14]. E.E. Garcia Rojas, J.S.R. Coimbra, J. Telis-Romero, Thermophysical properties of cotton, canola, sunflower and soybean oils as a function of temperature, International Journal of Food Properties 16 (2013) 1620-1629. Doi: 10.1080/10942912.2011.60488910.1080/10942912.2011.604889 Search in Google Scholar

[15]. S. Kakaç, H. Liu, A. Pramuanjaroenkij, Heat exchangers – selection, rating and thermal design, third edition, CRC Press, Taylor & Francis Groupe, Boca Raton, London, New York (2012). Search in Google Scholar

[16]. W.M. Kays, A.L. London, Compact Heat Exchangers, McGraw-Hill, New York (1984). Search in Google Scholar

[17]. A. Fakheri, Heat Exchanger Efficiency, Journal of Heat Transfer 129 (2007) 1268-1276. Doi: 10.1115/1.273962010.1115/1.2739620 Search in Google Scholar

[18]. R. Tiwari, G. Maheshwari, Effectiveness and efficiency analysis of parallel flow and counter flow heat exchangers, International Journal of Application or Innovation in Engineering & Management 6 (2017) 314-319 Search in Google Scholar

[19]. R. Laskowski, M. Jaworski, Maximum entropy generation rate in a heat exchanger at constant inlet parameters, Journal of Mechanical and Energy Engineering 1 (2017) 71-86 Search in Google Scholar

[20]. A. Bejan, The thermodynamic design of heat and mass transfer processes and devices, Heat and Fluid Flow 8 (1987) 258–276. Doi: 10.1016/0142-727X(87)90062-210.1016/0142-727X(87)90062-2 Search in Google Scholar

eISSN:
2286-038X
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Chemistry, other