[
AHMED, U. – CARPITELLA, S. – CERTA, A. 2021. An integrated methodological approach for optimising complex systems subjected to predictive maintenance. In Reliability Engineering & System Safety, vol. 216, article no. 108022. DOI: https://doi.org/10.1016/j.ress.2021.108022
]Search in Google Scholar
[
AKHTAR, M. J. – NASEEM, A. – AHSAN, F. 2024. A novel hybrid approach to explore the interaction among faults in production process with extended FMEA model using DEMATEL and cloud model theory. In Engineering Failure Analysis, vol. 157, article no. 107876. DOI: https://doi.org/10.1016/j.engfailanal.2023.107876
]Search in Google Scholar
[
ALINEZHAD, A. – KHALILI, J. 2019. DEMATEL method. In ALINEZHAD, A. – KHALILI, J. (eds). New Methods and Applications in Multiple Attribute Decision Making (MADM). Cham : Springer, 233 pp. eISBN 978-3-030-15009-9. DOI: https://doi.org/10.1007/978-3-030-15009-9_15
]Search in Google Scholar
[
BORAL, S. – CHATURVEDI, S. K. – LIU, Y. – HOWARD, I. 2024. Integrated fuzzy MCDM frameworks in risk prioritization of failure modes. In KARANKI, D. R. (ed.). Frontiers of Performability Engineering. Singapore : Springer, 687 pp. eISBN 978-981-99-8258-5. DOI: https://doi.org/10.1007/978-981-99-8258-5_14
]Search in Google Scholar
[
BUDIRAHARJO, R. – SARNO, R. – WIJAYA, D. R. – PRASETYO, H. N. – WASPADA, I. 2023. IMARA: A new approach to multi-attribute risk assessment based on event data weighting (case study in a container terminal). In IEEE Access, vol. 11, pp. 62292–62306. DOI: https://doi.org/10.1109/ACCESS.2023.3287781
]Search in Google Scholar
[
BUJNA, M. – KOTUS, M. – MATUŠEKOVÁ, E. 2019. Using the DEMATEL model for the FMEA risk analysis. In System Safety: Human – Technical Facility – Environment, vol. 1, no. 1, pp. 550–557. DOI: https://doi.org/10.2478/czoto-2019-0070
]Search in Google Scholar
[
BUJNA, M. – LEE, C. K. – KADNÁR, M. – KORENKO, M. – BALÁŽI, J. 2023. New possibilities of using DEMATEL and ERPN in the new PFMEA hybrid model. In Applied Sciences, vol. 13, no. 6, article no. 3627. DOI: https://doi.org/10.3390/app13063627
]Search in Google Scholar
[
BUJNA, M. – PRÍSTAVKA, M. – LEE, C. K. – STRÁPEKOVÁ, Z. – KAPELA, K. – MALICEVIC, Z. 2024. Determining the reliability level by combining FMEA, FTA and DEMATEL tools. In Agricultural Engineering, vol. 28, no. 1, pp. 251–276. DOI: https://doi.org/10.2478/agriceng-2024-0016
]Search in Google Scholar
[
CHESHMBERAH, M. – NADERIZADEH, A. – SHAFAGHAT, A. – NOKABADI, M. K. 2020. An integrated process model for root cause failure analysis based on reality charting, FMEA and DEMATEL. In International Journal of Data and Network Science, vol. 4, no. 2, pp. 225–236. DOI: https://doi.org/10.5267/j.ijdns.2019.12.003
]Search in Google Scholar
[
DAHHAM, G. A. – AL-IRHAYIM, M. N. – AL-MISTAWI, K. E. – KHESSRO, M. K. 2023. Performance evaluation of artificial neural network modelling to a ploughing unit in various soil conditions. In Acta Technologica Agriculturae, vol. 26, no. 4, pp. 194–200. DOI: https://doi.org/10.2478/ata-2023-0026
]Search in Google Scholar
[
GULATI, R. 2020. Maintenance and Reliability Best Practices. (3rd ed). Norwalk : Industrial Press, 768 pp. eISBN 978-0-8311-3647-5. Available at: https://app.knovel.com/hotlink/khtml/id:kt012RU8B2/maintenance-reliability/waste-analysis
]Search in Google Scholar
[
JOU, Y.-T. – YANG, K.-H. – LIAO, M.-L. – LIAW, C.-S. 2016. Multi-criteria failure mode effects and criticality analysis method: A comparative case study on aircraft braking system. In International Journal of Reliability and Safety, vol. 10, no. 1, pp. 1–21. DOI: https://doi.org/10.1504/IJRS.2016.076338
]Search in Google Scholar
[
KAMIS, N. H. – SHAMUDIN, N. A. A. – KILICMAN, A. – KADIR, N. A. – YUSOFF, B. 2024. A hybrid fuzzy approach of similarity-influence-network and DEMATEL: Visualization and analysis. In Malaysian Journal of Fundamental and Applied Sciences, vol. 20, no. 2, pp. 424–434. DOI: https://doi.org/10.11113/mjfas.v20n2.3343
]Search in Google Scholar
[
KHESSRO, M. K. – HILAL, Y. Y. – AL-JAWADI, R. A. – AL-IRHAYIM, M. N. 2022. Greenhouse energy analysis and neural networks modelling in Northern Iraq. In Acta Technologica Agriculturae, vol. 25, no. 4, pp. 205–210. DOI: https://doi.org/10.2478/ata-2022-0030
]Search in Google Scholar
[
KUCHEKAR, P. – BHONGADE, A. S. – REHMAN, A. U. – MIAN, S. H. 2024. Assessing the critical factors leading to the failure of the industrial pressure relief valve through a hybrid MCDM-FMEA approach. In Machines, vol. 12, no. 11, article no. 820. DOI: https://doi.org/10.3390/machines12110820
]Search in Google Scholar
[
KUZU, A. C. 2023. Application of fuzzy DEMATEL approach in maritime transportation: A risk analysis of anchor loss. In Ocean Engineering, vol. 273, article no. 113786. DOI: https://doi.org/10.1016/j.oceaneng.2023.113786
]Search in Google Scholar
[
LAI, K.-K. – LIN, S.-W. – LO, H.-W. – HSIAO, C.-Y. – LAI, P.-J. 2023. Risk assessment in sustainable production: Utilizing a hybrid evaluation model to identify the waste factors in steel plate manufacturing. In Sustainability, vol. 15, no. 24, article no. 16583. DOI: https://doi.org/10.3390/su152416583
]Search in Google Scholar
[
LIU, H.-C. – LIU, L. – LIU, N. 2013. Risk evaluation approaches in failure mode and effects analysis: A literature review. In Expert Systems with Applications, vol. 40, no. 2, pp. 828–838. DOI: https://doi.org/10.1016/j.eswa.2012.08.010
]Search in Google Scholar
[
LIU, S. – GUO, X. – ZHANG, L. 2019. An improved assessment method for FMEA for a shipboard integrated electric propulsion system using fuzzy logic and DEMATEL theory. In Energies, vol. 12, no. 16, article no. 3162. DOI: https://doi.org/10.3390/en12163162
]Search in Google Scholar
[
LIU, Z. – BI, Y. – LIU, P. 2023. A conflict elimination-based model for failure mode and effect analysis: A case application in medical waste management system. In Computers & Industrial Engineering, vol. 178, article no. 109145. DOI: https://doi.org/10.1016/J.CIE.2023.109145
]Search in Google Scholar
[
LO, H.-W. – SHIUE, W. – LIOU, J. J. H. – TZENG, G.-H. 2020. A hybrid MCDM-based FMEA model for identification of critical failure modes in manufacturing. In Soft Computing, vol. 24, pp. 15733–15745. DOI: https://doi.org/10.1007/s00500-020-04903-x
]Search in Google Scholar
[
LUO, X. – HE, H. – ZHANG, X. – MA, Y. – BAI, X. 2022. Failure mode analysis of intelligent ship positioning system considering correlations based on fixed-weight FMECA. In Processes, vol. 10, no. 12, article no. 2677. DOI: https://doi.org/10.3390/PR10122677
]Search in Google Scholar
[
MIL-STD-1629 A:1980. Procedures for performing a failure mode, effects and criticality analysis. Available at: Procedures for Performing a Failure Mode, Effects and Criticality Analysis.
]Search in Google Scholar
[
MZOUGUI, I. – CARPITELLA, S. – CERTA, A. – EL FELSOUFI, Z. – IZQUIERDO, J. 2020. Assessing supply chain risks in the automotive industry through a modified MCDM-based FMECA. In. Processes, vol. 8, no. 5, article no. 579. DOI: https://doi.org/10.3390/PR8050579
]Search in Google Scholar
[
NGUYEN, T.-L. – SHU, M.-H. – HSU, B.-M. 2016. Extended FMEA for sustainable manufacturing: An empirical study in the non-woven fabrics industry. In Sustainability, vol. 8, no. 9, article no. 939. DOI: https://doi.org/10.3390/su8090939
]Search in Google Scholar
[
PLINTA, D. – GOLINSKA, E. – DULINA, L. 2021. Practical application of the new approach to FMEA method according to AIAG and VDA reference manual. In Communications, vol. 23, no. 4, pp. B325– B335. DOI: https://doi.org/10.26552/COM.C.2021.4.B325-B335
]Search in Google Scholar
[
RAHMADANI, M. – SUPARNO, 2021. Risk analysis for sustainable supplier selection. In Journal of Physics: Conference Series, vol. 1726, article no. 012005. DOI: https://doi.org/10.1088/1742-6596/1726/1/012005
]Search in Google Scholar
[
RANA, S. – NAIR, K. S. – PAUL RUSSEL, U. S. – VINOD, M. 2022. Optimum investigation and priority ranking of hazards in aviation maintenance. In Proceedings of the 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS), Chennai, India, pp. 176–181. DOI: https://doi.org/10.1109/ICPS55917.2022.00040
]Search in Google Scholar
[
SHEN, G.-X. – SUN, S.-G. – ZHANG, Y.-Z. – WANG, Z.-Q. – CHEN, B.-K. – MA, C. 2014. System failure analysis based on DEMATEL-ISM and FMECA. In Journal of Central South University, vol. 21, pp. 4518–4525. DOI: https://doi.org/0.1007/s11771-014-2456-8
]Search in Google Scholar
[
SI, S.-L. – YOU, X.-Y. – LIU, H.-C. – ZHANG, P. 2018. DEMATEL technique: A systematic review of the state-of-the-art literature on methodologies and applications. In Mathematical Problems in Engineering, vol. 2018, no. 1, article no. 3696457. DOI: https://doi.org/10.1155/2018/3696457
]Search in Google Scholar
[
ŠMIDOVNIK, T. – GROŠELJ, P. 2023. Solution for convergence problem in DEMATEL method: DEMATEL of finite sum of influences. In Symmetry, vol. 15, no. 7, article no. 1357. DOI: https://doi.org/10.3390/SYM15071357
]Search in Google Scholar
[
STN EN IEC 60812:2019. Failure modes and effects analysis (FMEA and FMECA).
]Search in Google Scholar
[
THAKKAR, J. J. 2021. Multi-Criteria Decision Making. Singapore : Springer, 390 pp. eISBN 978-981-33-4745-8. DOI: https://doi.org/10.1007/978-981-33-4745-8
]Search in Google Scholar
[
WANG, X. – ZHANG, Y. – SHEN, G. 2016. An improved FMECA for feed system of CNC machining center based on ICR and DEMATEL method. In The International Journal of Advanced Manufacturing Technology, vol. 83, pp. 43–54. DOI: https://doi.org/10.1007/s00170-015-7551-y
]Search in Google Scholar
[
WANG, X. – GAO, X. – XING, Z. – QIN, Y. – JIA, L. 2014. Application of DEMATEL in metro door system reliability research. In 2014 10th International Conference on Reliability, Maintainability and Safety (ICRMS), Guangzhou, China, pp. 618–622. IEEE. DOI: https://doi.org/10.1109/ICRMS.2014.7107270
]Search in Google Scholar
[
WANG, Z. – WANG, R. – DENG, W. – ZHAO, Y. 2022. An integrated approach-based FMECA for risk assessment: Application to offshore wind turbine pitch system. In Energies, vol. 15, no. 5, article no. 1858. DOI: https://doi.org/10.3390/EN15051858
]Search in Google Scholar