1. bookTom 7 (2020): Zeszyt 3 (November 2020)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2603-347X
Pierwsze wydanie
15 Dec 2015
Częstotliwość wydawania
1 raz w roku
Języki
Angielski
Otwarty dostęp

Effect of in vitro gastrointestinal digestion on phenolic compounds and the antioxidant activity of Aloe vera

Data publikacji: 08 Dec 2020
Tom & Zeszyt: Tom 7 (2020) - Zeszyt 3 (November 2020)
Zakres stron: 11 - 25
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2603-347X
Pierwsze wydanie
15 Dec 2015
Częstotliwość wydawania
1 raz w roku
Języki
Angielski

[1]. Berger, M.M., Antioxidant micronutrients in major trauma and burns: evidence and practice, Nutr Clin Pract, 2006, 21, 438-49.10.1177/011542650602100543816998143Search in Google Scholar

[2]. Djeridane, A.; Yous, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N., Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds, Food Chem, 2006, 97, 654-660.Search in Google Scholar

[3]. Guo, X.; Mei, N., Aloe vera: a review of toxicity and adverse clinical effects, J Environ Sci Health, 2016, 34, 77-96.Search in Google Scholar

[4]. Minjares-Feuentes, R.; Femenia, A.; Comas-Serra, F.; Rosséllo, C.; Rodrigue Gonzalez, V.M.; González Laredo, R.F.; Gallegos-Infante, J.A.; Medina-Torres, L., Effect of different drying procedures on physicochemical properties and flow behavior of Aloe vera (Aloe barbadensis Miller) gel., LWT−Food Science and Technology, 2016, 74, 378-386.Search in Google Scholar

[5]. Choi, S.; Chung, M.H., A review on the relationship between Aloe vera components and their biologic effects, Semin Integr Med, 2003, 1, 53-62.Search in Google Scholar

[6]. Kaithwas, G.; Singh, P.; Bhatia, D., Evaluation of in vitro and in vivo antioxidant potential of polysaccharides from Aloe vera (Aloe barbadensis Miller) gel, Drug Chem Toxicol, 2014, 37, 135-143.Search in Google Scholar

[7]. Soriano Sancho, R.A.; Pavan, V.; Pastore, G.M., Effect of in vitro digestion on bioactive compounds and antioxidant activity of common bean seed coats, Food Res Int, 2015, 76, 74-78.Search in Google Scholar

[8]. Kamiloglu, S., Bioavailability and bioactivity of black carrot polyphenols using in vitro digestion models combined with a co-culture model of intestinal and endothelial cell lines. Ph.D. Dissertation, Faculty of Bioscience Engineering, Ghent University, Belgium, 2016.Search in Google Scholar

[9]. Chen, G.L.; Chen, S.G.; Zhao, Y.Y.; Luo, C.X.; Li, J.; Gao, Y.Q., Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion, Industrial Crops and Products, 2014, 57, 150-157.Search in Google Scholar

[10]. De Ancos, B.; Cilla,A.; Barberá, R.; Sánchez-Moreno, C.; Cano, M. P., Influence of orange cultivar and mandarin postharvest storage on polyphenols, ascorbic acid and antioxidant activity during gastrointestinal digestion, Food Chemistry, 2017, 225, 114-124.Search in Google Scholar

[11]. Liang, L.; Wu, X.; Zhao, T.; Zhao, J.; Li, F.; Zou,Y.; Mao, G.; Yang, L., In vitro bioaccessibility and antioxidant activity of anthocyanins from mulberry (Morus atropurpurea Roxb.) following simulated gastrointestinal digestion, Food Research International, 2012,46, 76-82.Search in Google Scholar

[12]. Lucas-González, R.; Navarro-Coves, S.; Pérez-Álvarez, J.A.; Fernández-López, J.; Muñoz, L.A.; Viuda-Martos, M., Assessment of polyphenolic profile stability and changes in the antioxidant potential of maqui berry (Aristotelia chilensis (Molina) Stuntz) during in vitro gastrointestinal digestion, Industrial Crops and Products, 2016, 94, 774-782.Search in Google Scholar

[13]. Talens, P.; Mora, L.; Bramley, P.M.; Fraser, P. D., Antioxidant compounds and their bioaccessibility in tomato fruit and puree obtained from a DETIOLATED-1 (DET-1) down-regulated genetically modified genotype, Food Chemistry, 2016, 213, 735-741.Search in Google Scholar

[14]. Bouayed, J.; Deußer, R.; Hoffmann, L.; Bohn, T., Bioaccessible and dialyzable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns, Food Chemistry, 2012, 131, 1466-1472.Search in Google Scholar

[15]. Kamiloglu, S.; Capanoglu, E., Investigating the in vitro bioaccessibility of in fresh and sun-dried figs (Ficus carica L.), Journal of Food Science and Technology, 2013, 48, 2621-2629.Search in Google Scholar

[16]. Ydjedd, S.; Bouriche, S.; López-Nicolás, R.; Sánchez-Moya, T.; Frontela-Saseta, C.; RosBerruezo, G.; Rezgui, F.; Louaileche, H.; Kati, D.E., Effect of in vitro gastrointestinal digestion on encapsulated and nonencapsulated phenolic compounds of carob (Ceratonia siliqua L.) pulp extracts and their antioxidant capacity, J Agric Food Chem, 2017, 65, 827-835.Search in Google Scholar

[17]. Goupy, J.; Creignton, L., Introduction aux plans d’expériences, 2006, Donud, France.Search in Google Scholar

[18]. Laib, I.; Barkat, M., Optimization of Conditions for Extraction of Polyphenols and the Determination of the Impact of Cooking on Total Polyphenolic, Antioxidant, and Anticholinesterase Activities of Potato, Foods, 2018, 7, 36.10.3390/foods7030036586755129522482Search in Google Scholar

[19]. Laib, I.; Boubrik, F.; Barkat, M., Optimization of the extraction parameters of Aloe vera polyphenols and study of antioxidant and antifungal activities: application to molds isolated from durum wheat, Acta Scientifica Naturalis, 2019, 6, 79-90.Search in Google Scholar

[20]. Elfalleh, W.; Hannachi, H.; Tlili, N.; Yahia, Y.; Nasri, N.; Ferchichi, A., Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower, J Med Plants Res, 2012, 6, 4724-4730.Search in Google Scholar

[21]. Waterhouse, A., Folin-Ciocalteu Micro Method for Total Phenol in Wine, Food Anal Chem, 1999, 299, 152-178.Search in Google Scholar

[22]. Dehpour, A.A.; Ibrahimzadeh, M.A.; Fazel, S.N.; Seyed, M.N.,Antioxydant activity of the methanol extract of Ferula assafoetida and its essential oil composition, Grasas Y Aceites,2009, 60, 405-412.Search in Google Scholar

[23]. Blois, M.S., Antioxidant determinations by the use of a stable free radical, Nature, 1958, 181, 1199-1200.10.1038/1811199a0Search in Google Scholar

[24]. Sharififar, F.;Mosh afi, M.H.; Mansouri, S.H.; Khodashenas, M.; Khoshnoodi, M., In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora Boiss, Food Cont, 2007, 18(7), 800-805.10.1016/j.foodcont.2006.04.002Search in Google Scholar

[25]. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang M.; Rice-Evans, C., Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic Biol Med, 1999, 26, 1231.Search in Google Scholar

[26]. Özyürek, M.; Güçlü, K.; Apak, R., The main and modified CUPRAC methods of antioxidant measurement, TrAC-Trends Anal Chem, 2011, 30, 652-664.Search in Google Scholar

[27]. Turkmen, N.; Velioglu, Y.S.; Sari, F.; Polat, G., Effect of extraction conditions on measured total polyphenol contents and antioxidant and antibacterial activities of black tea, Molecules, 2007, 12, 484-496.Search in Google Scholar

[28]. Velderrain-Rodríguez, G.; Quirós-Sauceda, A.; Mercado-Mercado, G.; Ayala-Zavala, J.F.; Astiazarán-García, H.; Robles-Sánchez, R.M.; Wall-Medrano, A.; Sayago-Ayerdi, S.; González-Aguilar, G.A., Effect of dietary fiber on the bioaccessibility of phenolic compounds of mango, papaya and pine apple fruits by an in vitro digestion model, Food Science and Technology (Campinas), 2016, 36, 188-194.Search in Google Scholar

[29]. Seraglio, S.K.T.; Valese, A.C.; Daguer, H.; Bergamo, G.; Azevedo, M.S.; Nehring, P.; Gonzaga, L.V.; Fett,R.; Costa, A.C.O., Effect of in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds, minerals, and antioxidant capacity of Mimosa scabrella Bentham honeydew honeys, Food Research International, 2017, 99, 670-678.Search in Google Scholar

[30]. Lucas-González, R.; Viuda-Martos, M.; Pérez-Alvarez, J.A.; Fernández-López, J., In vitro digestion models suitable for foods: Opportunities for new fields of application and challenges, Food Research International, 2018, 107, 423-436.Search in Google Scholar

[31]. Bermúdez-Soto, M.J.;Tomás-Barberán, F.A.; García-Conesa, M.T., Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion, Food Chemistry, 2007, 102, 865-874.Search in Google Scholar

[32]. Bouayed, J.; Hoffmann, L.; Bohn, T., Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake, Food Chemistry, 2011, 128, 14-21.Search in Google Scholar

[33]. Sharaf, S.; Higazy, A; Hebeish, A., Propolis induced antibacterial activity and other technical properties of cotton textiles, International Journal of Biological Macromolecules, 2013, 59, 408-416.Search in Google Scholar

[34]. Gutierrez-Gonçalves, M.E.J., Marcucci, M.C., Atividades Antimicrobiana e Antioxidante da Própolis do Estado do Ceará, Revista Fitos, 2009, 4(1), 81-86.10.32712/2446-4775.2009.88Search in Google Scholar

[35]. Barud, H.; Júnior, A.; Saska, S.; Mestieri, L.; Campos, J.A.D.B.; de Freitas, R.M.;Ferreira, N.U.; Nascimento, A.P.; Miguel, F.G.; de Oliveira Lima Leite Vaz, M.M.; Barizon, E.A.; Marquele-Oliveira, F.; Gaspar, A.M.M.; Ribeiro, S.J.L.; Berretta, A.A. Antimicrobial Brazilian propolis (EPPAF) containing biocellulose membranes as promising biomaterial for skin wound healing. Evidence Based Complementary and Alternative Medicine, 2013, 1-10.10.1155/2013/703024369083223840264Search in Google Scholar

[36]. Silva, A.J.; Silva, J.R.; de Souza, N.C.; Souto, P.C.S., Membranes from latex with propolis for biomedical applications, Mater Lett, 2014, 116, 235.10.1016/j.matlet.2013.11.045Search in Google Scholar

[37]. Saritha, M., Efficacy of topical Aloe vera in patients with oral lichen planus: à randomized double-blind study, J Oral Pathology and Medicine, 2010, 39(10), 735-740.10.1111/j.1600-0714.2010.00947.x20923446Search in Google Scholar

[38]. Salawu, K.M.; Ajaiyeoba, E.O.; Ogbole, O.O.; Adeniji, J.A.; Faleye, T.C.; Agunu, A., Antioxidant, brine shrimp lethality and antiproliferative properties of gel and leaf extracts of Aloe schweinfurthii and Aloe vera, J Herbs Spices Med Plants, 2017, 23(4), 263-270.10.1080/10496475.2017.1318328Search in Google Scholar

[39]. Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I., Chun, O.K., Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US, foods, J Food Compos Anal, 2011, 24, 1043-1048.Search in Google Scholar

[40]. Zhao, H.; Dong, J., Lu, J.; Chen, J.; Li, Y.; Shan, L.; Lin, Y.; Fan, W.; Gu, G., Effects of extraction solvent mixtures on antioxidant activity evaluation and their extraction capacity and selectivity for free phenolic compounds in barley (Hordeum vulgare L.), J Agric Food Chem, 2006, 54(19), 7277-7286.10.1021/jf061087w16968094Search in Google Scholar

[41]. Lachman, J.; Hamouz, K.; Sulc, M; Pivec, V.; Hejmankova, A.; Dvorak, P.; Cepl, J. Cultivar differences of total anthocyanins and anthocyanidins in red and purple coloured potatoes and their relation to antioxidant activity, Food Chem, 2009, 114, 836-843.Search in Google Scholar

[42]. Hamouz, K.; Lachman, J.; Pazderu, K.; Tomášek, J.; Hejtmánková, K.; Pivec, V., Differences in anthocyanin content and antioxidant activity of potato tubers with different flesh color, Plant Soil Environ, 2011, 57, 478-485.Search in Google Scholar

[43]. Hayes, J.E.; Stepanyan, V.; Allen, P.; O’Grady, M.N.; Kerry, J.P., Evaluation of the effects of selected plant-derived nutraceuticals on the quality and shelf-life stability of raw and cooked pork sausages, LWT Food Sci Technol, 2011, 44, 164-172.Search in Google Scholar

[44]. Montoro, P.; Tuberoso, C.I.G.; Piacente, S.; Perrone, A.; De Feo, V.; Cabras, P.C., Stability and antioxidant activity of polyphenols in extracts of Myrtus communis L. berries used for the preparation of myrtle liqueur, J Pharm Biomed,2006, 41(5), 1614-1619.10.1016/j.jpba.2006.02.01816554139Search in Google Scholar

[45]. Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A., In vitro bio-accessibility and antioxidant activity of grape polyphenols, Food Chemistry, 2010, 120, 599-606.Search in Google Scholar

[46]. Henning, S.M.; Zhang, Y.; Rontoyanni, V.G.; Huang, J.; Lee, R.P.; Trang, A.; Nuernberger, G.; Heber, D.J., Variability in the antioxidant activity of dietary supplements from pomegranate, milk thistle, green tea, grape seed, goji, and acali: Effects of in vitro digestion, Journal of Agricultural and Food Chemistry, 2014, 62, 4313-4321.Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo