Machine Learning Methods of Remote Sensing Data Processing for Mapping Salt Pan Crust Dynamics in Sebkha de Ndrhamcha, Mauritania
30 cze 2025
O artykule
Data publikacji: 30 cze 2025
Zakres stron: 37 - 69
Otrzymano: 06 kwi 2024
Przyjęty: 08 kwi 2025
DOI: https://doi.org/10.2478/arsa-2025-0003
Słowa kluczowe
© 2025 Polina LEMENKOVA, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Accuracy assessment for ML models in GRASS GIS: 1) Random Forest (RF); 2) Support Vector Machine (SVM); 3) Decision Tree Classifier (DTC); 4) Gradient Boosting Classifier (GBC)_ Estimated classes of land cover types for 2014–2023 in West Mauritania_
Year | Producer’s accuracy, % | User’s accuracy, % | Kappa statistics | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RF | SVM | DTC | GBC | RF | SVM | DTC | GBC | RF | SVM | DTC | GBC | |
Land Cover Class 1: Water bodies | ||||||||||||
77 | 83 | 74 | 71 | 78 | 88 | 62 | 62 | 0.80 | 0.74 | 0.65 | 0.65 | |
78 | 84 | 72 | 70 | 77 | 85 | 65 | 67 | 0.81 | 0.93 | 0.53 | 0.59 | |
76 | 79 | 75 | 69 | 71 | 79 | 66 | 68 | 1.00 | 0.90 | 0.69 | 0.61 | |
81 | 81 | 73 | 72 | 89 | 89 | 68 | 72 | 0.93 | 0.95 | 0.58 | 0.61 | |
82 | 80 | 65 | 73 | 82 | 73 | 75 | 74 | 0.95 | 0.70 | 0.84 | 1.00 | |
79 | 82 | 66 | 68 | 77 | 74 | 74 | 70 | 0.74 | 0.79 | 0.83 | 0.67 | |
Land Cover Class 2: Shelf and coastal plains | ||||||||||||
89 | 78 | 72 | 67 | 100 | 98 | 56 | 76 | 0.82 | 0.91 | 0.67 | 0.69 | |
95 | 91 | 68 | 72 | 92 | 65 | 64 | 65 | 0.73 | 1.00 | 0.56 | 0.74 | |
100 | 92 | 87 | 91 | 87 | 77 | 63 | 68 | 0.78 | 0.94 | 0.88 | 0.68 | |
88 | 100 | 86 | 65 | 89 | 87 | 69 | 62 | 0.89 | 0.84 | 0.83 | 0.85 | |
100 | 95 | 96 | 59 | 78 | 77 | 58 | 59 | 0.91 | 0.78 | 0.72 | 0.73 | |
84 | 83 | 75 | 71 | 73 | 75 | 74 | 72 | 0.92 | 0.75 | 0.75 | 0.56 | |
Land Cover Class 3: Sebkha | ||||||||||||
95 | 78 | 67 | 74 | 92 | 90 | 66 | 67 | 0.88 | 0.74 | 0.68 | 0.72 | |
85 | 93 | 88 | 72 | 78 | 87 | 69 | 81 | 0.78 | 0.81 | 0.55 | 0.56 | |
88 | 89 | 63 | 64 | 77 | 94 | 71 | 69 | 0.91 | 0.88 | 0.71 | 0.54 | |
94 | 75 | 64 | 69 | 93 | 85 | 72 | 65 | 1.00 | 0.64 | 0.75 | 0.78 | |
73 | 92 | 64 | 81 | 73 | 95 | 59 | 71 | 0.84 | 1.00 | 0.73 | 0.78 | |
69 | 68 | 76 | 83 | 67 | 89 | 73 | 72 | 0.91 | 0.90 | 0.74 | 0.84 | |
Land Cover Class 4: Urban areas | ||||||||||||
87 | 78 | 64 | 68 | 88 | 86 | 67 | 66 | 1.00 | 0.85 | 0.76 | 0.81 | |
94 | 79 | 69 | 64 | 92 | 75 | 61 | 72 | 0.95 | 1.00 | 0.82 | 0.73 | |
74 | 91 | 74 | 72 | 91 | 79 | 72 | 74 | 0.85 | 0.87 | 0.75 | 0.80 | |
69 | 80 | 65 | 76 | 84 | 64 | 68 | 68 | 1.00 | 0.79 | 0.81 | 0.69 | |
71 | 66 | 83 | 81 | 74 | 62 | 54 | 65 | 0.92 | 1.00 | 0.65 | 0.75 | |
83 | 65 | 72 | 83 | 79 | 75 | 59 | 71 | 0.87 | 0.72 | 0.69 | 0.73 | |
Land Cover Class 5: Sahelian grassland | ||||||||||||
87 | 81 | 65 | 67 | 82 | 90 | 83 | 81 | 0.93 | 0.74 | 0.95 | 0.91 | |
64 | 65 | 71 | 68 | 76 | 79 | 74 | 78 | 0.78 | 0.68 | 0.76 | 0.58 | |
78 | 72 | 73 | 57 | 79 | 91 | 68 | 63 | 1.00 | 0.83 | 0.73 | 0.79 | |
74 | 79 | 72 | 71 | 67 | 77 | 64 | 68 | 0.91 | 0.65 | 0.88 | 0.63 | |
88 | 82 | 71 | 82 | 81 | 80 | 72 | 69 | 0.53 | 1.00 | 0.54 | 0.77 | |
91 | 75 | 65 | 64 | 91 | 82 | 71 | 90 | 1.00 | 0.91 | 0.67 | 0.82 | |
Land Cover Class 6: Salty sands | ||||||||||||
88 | 72 | 67 | 63 | 91 | 79 | 68 | 67 | 0.98 | 0.73 | 0.73 | 0.78 | |
72 | 79 | 72 | 76 | 82 | 74 | 65 | 78 | 1.00 | 0.75 | 0.81 | 0.75 | |
91 | 90 | 64 | 78 | 90 | 78 | 71 | 81 | 1.00 | 0.81 | 0.76 | 0.69 | |
89 | 85 | 69 | 74 | 85 | 81 | 78 | 82 | 0.81 | 0.86 | 0.88 | 0.65 | |
90 | 84 | 56 | 71 | 78 | 90 | 64 | 89 | 0.84 | 0.91 | 0.72 | 0.67 | |
77 | 71 | 68 | 80 | 74 | 72 | 73 | 75 | 0.78 | 1.00 | 0.63 | 0.68 | |
Land Cover Class 7: Compact soil | ||||||||||||
89 | 78 | 67 | 63 | 89 | 81 | 69 | 63 | 0.88 | 0.73 | 0.65 | 0.61 | |
73 | 77 | 63 | 69 | 73 | 72 | 73 | 71 | 1.00 | 0.61 | 0.69 | 0.83 | |
78 | 69 | 72 | 65 | 85 | 85 | 74 | 70 | 0.85 | 0.68 | 0.81 | 0.95 | |
88 | 81 | 79 | 71 | 69 | 74 | 65 | 65 | 0.97 | 0.74 | 0.85 | 0.74 | |
91 | 90 | 80 | 75 | 70 | 78 | 69 | 69 | 0.83 | 1.00 | 0.72 | 0.61 | |
74 | 75 | 71 | 61 | 66 | 64 | 81 | 74 | 0.74 | 0.92 | 0.78 | 0.89 | |
Land Cover Class 8: Stony desert and yellow dunes | ||||||||||||
85 | 83 | 75 | 67 | 89 | 73 | 68 | 74 | 0.84 | 0.81 | 0.71 | 0.86 | |
78 | 88 | 78 | 69 | 93 | 84 | 69 | 82 | 0.75 | 1.00 | 0.82 | 0.92 | |
89 | 81 | 74 | 78 | 78 | 86 | 89 | 76 | 1.00 | 0.63 | 0.70 | 0.84 | |
92 | 79 | 91 | 71 | 95 | 72 | 81 | 81 | 0.72 | 0.79 | 0.62 | 0.70 | |
91 | 84 | 73 | 74 | 81 | 89 | 90 | 89 | 0.68 | 0.71 | 0.59 | 0.69 | |
84 | 75 | 75 | 73 | 73 | 90 | 83 | 73 | 0.66 | 0.65 | 0.60 | 0.76 | |
Land Cover Class 9: Sandy desert and white dunes | ||||||||||||
92 | 81 | 67 | 65 | 81 | 82 | 65 | 71 | 0.77 | 0.82 | 0.77 | 0.71 | |
83 | 89 | 72 | 81 | 84 | 78 | 78 | 78 | 0.81 | 0.73 | 0.81 | 0.55 | |
93 | 70 | 68 | 72 | 95 | 73 | 71 | 73 | 0.64 | 0.67 | 0.80 | 1.00 | |
78 | 93 | 80 | 68 | 88 | 89 | 83 | 67 | 1.00 | 0.54 | 0.68 | 0.75 | |
77 | 94 | 71 | 73 | 89 | 71 | 69 | 81 | 0.98 | 0.91 | 0.72 | 0.67 | |
74 | 85 | 81 | 79 | 73 | 69 | 62 | 66 | 0.90 | 1.00 | 0.74 | 0.79 | |
Land Cover Class 10: Bare soil and rocks | ||||||||||||
91 | 83 | 68 | 78 | 84 | 83 | 78 | 74 | 0.87 | 1.00 | 0.73 | 0.69 | |
89 | 82 | 63 | 72 | 83 | 78 | 73 | 75 | 0.81 | 0.74 | 0.77 | 0.57 | |
88 | 75 | 65 | 77 | 79 | 69 | 69 | 81 | 1.00 | 0.73 | 0.81 | 0.61 | |
79 | 69 | 73 | 64 | 74 | 71 | 74 | 67 | 0.74 | 0.69 | 0.80 | 0.74 | |
82 | 91 | 79 | 69 | 75 | 73 | 81 | 83 | 0.63 | 0.81 | 1.00 | 0.83 | |
77 | 80 | 75 | 71 | 82 | 95 | 83 | 74 | 0.84 | 0.68 | 0.65 | 0.80 |
Metadata of the multispectral satellite images Landsat 8-9 OLI/TIRS, used in this study, obtained from USGS1
Date | Spacecraft / ID | Path/row | Entity product ID | Scene ID | Cloud/Coverage |
---|---|---|---|---|---|
27/04/2014 | Landsat 8 | 205/47 | LC08_L2SP_205047_20140427_20200911_02_T1 | LC82050472014117LGN01 | 0.00 |
03/04/2017 | Landsat 8 | 205/47 | LC08_L2SP_205047_20170403_20200904_02_T1 | LC82050472017093LGN00 | 0.04 |
22/04/2018 | Landsat 8 | 205/47 | LC08_L2SP_205047_20180422_20201015_02_T1 | LC82050472018112LGN00 | 0.04 |
11/04/2020 | Landsat 8 | 205/47 | LC08_L2SP_205047_20200411_20200822_02_T1 | LC82050472020102LGN00 | 0.17 |
09/04/2022 | Landsat 8 | 205/47 | LC09_L1TP_205047_20220409_20230422_02_T1 | LC92050472022099LGN01 | 0.00 |
28/04/2023 | Landsat 9 | 205/47 | LC09_L2SP_205047_20230428_20230430_02_T1 | LC92050472023118LGN00 | 0.01 |
Processing time of the satellite images Landsat-8 OLI/TIRS showing the effectiveness of ML methods executed by GRASS GIS
Method | Processing time |
---|---|
Clustering | <1 min |
Min-max discriminant analysis | ca. 25 sec |
Random Forest Classifier | 9 min |
Decision Tree Classifier | ca. 34 sec |
Gradient Boosting Classifier | 23 min |
Support Vector Machine Classifier | 47 min |
Estimated classes of land cover types in western Mauritania, Sebkha de Ndrhamcha, for April_ Map units in measurements: 30 m resolution for each pixel on the multispectral scene of Landsat 8-9 OLI/TIRS_
Year | Classes of land cover types in western Mauritania, Sebkha de Ndrhamcha | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
1410 | 4 | 30 | 79 | 202 | 708 | 1239 | 1581 | 1493 | 178 | |
1386 | 43 | 70 | 141 | 215 | 668 | 1056 | 1742 | 1548 | 144 | |
1384 | 21 | 78 | 110 | 182 | 598 | 1195 | 1975 | 1353 | 117 | |
1395 | 2 | 28 | 145 | 228 | 582 | 881 | 2502 | 1231 | 20 | |
1443 | 2 | 20 | 116 | 197 | 532 | 970 | 2567 | 1146 | 40 | |
1468 | 31 | 53 | 136 | 253 | 538 | 1153 | 1622 | 1577 | 206 |