Otwarty dostęp

Machine Learning Methods of Remote Sensing Data Processing for Mapping Salt Pan Crust Dynamics in Sebkha de Ndrhamcha, Mauritania

  
30 cze 2025

Zacytuj
Pobierz okładkę

Figure 1.

Topographic map of Mauritania showing the extent of the study area of the Sebkha de Ndrhamcha salt pan (rotated yellow square). Data: General Bathymetric Chart of the Oceans (GEBCO)/Shuttle Radar Topography Mission (SRTM). Software: Generic Mapping Tools (GMT).
Map source: author.
Topographic map of Mauritania showing the extent of the study area of the Sebkha de Ndrhamcha salt pan (rotated yellow square). Data: General Bathymetric Chart of the Oceans (GEBCO)/Shuttle Radar Topography Mission (SRTM). Software: Generic Mapping Tools (GMT). Map source: author.

Figure 2.

Surficial geology and lithologic units of Mauritania. Data: USGS, GEBCO. Software: QGIS. Map source: author.
Surficial geology and lithologic units of Mauritania. Data: USGS, GEBCO. Software: QGIS. Map source: author.

Figure 3.

Geological provinces around Mauritania. Data: USGS, GEBCO. Software: QGIS. Map source: author.
Geological provinces around Mauritania. Data: USGS, GEBCO. Software: QGIS. Map source: author.

Figure 4.

Land cover types in Mauritania. Data: FAO, OpenStreetMaps. Software: QGIS. Map source: author.
Land cover types in Mauritania. Data: FAO, OpenStreetMaps. Software: QGIS. Map source: author.

Figure 5.

Landsat 8-9 satellite images covering salt pan Sebkha de Ndrhamcha in western Mauritania in natural colours showing floodplain for 6 years (always April): (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Brief explanations of the colours: black colour indicates water areas of the Atlantic ocean, light beige colour represents sandy areas, brown colour indicates desert and bare lands, dark brown colour shows wet areas, grey colour indicates artificial surfaces (roads and urban areas) and cyan colour indicates salt pans on the original images. The colours are in Red Green Blue (RGB). Data source: US Geological Survey (USGS), downloaded from the EarthExplorer repository.
Landsat 8-9 satellite images covering salt pan Sebkha de Ndrhamcha in western Mauritania in natural colours showing floodplain for 6 years (always April): (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Brief explanations of the colours: black colour indicates water areas of the Atlantic ocean, light beige colour represents sandy areas, brown colour indicates desert and bare lands, dark brown colour shows wet areas, grey colour indicates artificial surfaces (roads and urban areas) and cyan colour indicates salt pans on the original images. The colours are in Red Green Blue (RGB). Data source: US Geological Survey (USGS), downloaded from the EarthExplorer repository.

Figure 6.

Classified Landsat 8-9 OLI/TIRS images using clustering: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Software: GRASS GIS. Source of maps: author.
Classified Landsat 8-9 OLI/TIRS images using clustering: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Software: GRASS GIS. Source of maps: author.

Figure 7.

Maps of rejection threshold probability for accuracy analysis of image classification by chi-squared test: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Software: GRASS GIS. Source of maps: author.
Maps of rejection threshold probability for accuracy analysis of image classification by chi-squared test: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Software: GRASS GIS. Source of maps: author.

Figure 8.

Random Forest Classifier of Machine Learning (ML) classification methods applied for processing of satellite images: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023.
Software: GRASS GIS. Source of maps: author.
Random Forest Classifier of Machine Learning (ML) classification methods applied for processing of satellite images: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Software: GRASS GIS. Source of maps: author.

Figure 9.

Decision Tree Classifier of Machine Learning (ML) classification methods applied for processing of satellite images: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023.
Software: GRASS GIS. Source of maps: author.
Decision Tree Classifier of Machine Learning (ML) classification methods applied for processing of satellite images: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Software: GRASS GIS. Source of maps: author.

Figure 10.

Gradient Boosting Classifier of Machine Learning (ML) classification methods applied for processing of satellite images: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Software: GRASS GIS. Source of maps: author.
Gradient Boosting Classifier of Machine Learning (ML) classification methods applied for processing of satellite images: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Software: GRASS GIS. Source of maps: author.

Figure 11.

Support Vector Machine (SVM) Classifier of Machine Learning (ML) classification methods applied for processing of satellite images: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Software: GRASS GIS. Source of maps: author.
Support Vector Machine (SVM) Classifier of Machine Learning (ML) classification methods applied for processing of satellite images: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Software: GRASS GIS. Source of maps: author.

Accuracy assessment for ML models in GRASS GIS: 1) Random Forest (RF); 2) Support Vector Machine (SVM); 3) Decision Tree Classifier (DTC); 4) Gradient Boosting Classifier (GBC)_ Estimated classes of land cover types for 2014–2023 in West Mauritania_

Year Producer’s accuracy, % User’s accuracy, % Kappa statistics
RF SVM DTC GBC RF SVM DTC GBC RF SVM DTC GBC
Land Cover Class 1: Water bodies
2014 77 83 74 71 78 88 62 62 0.80 0.74 0.65 0.65
2017 78 84 72 70 77 85 65 67 0.81 0.93 0.53 0.59
2018 76 79 75 69 71 79 66 68 1.00 0.90 0.69 0.61
2020 81 81 73 72 89 89 68 72 0.93 0.95 0.58 0.61
2022 82 80 65 73 82 73 75 74 0.95 0.70 0.84 1.00
2023 79 82 66 68 77 74 74 70 0.74 0.79 0.83 0.67
Land Cover Class 2: Shelf and coastal plains
2014 89 78 72 67 100 98 56 76 0.82 0.91 0.67 0.69
2017 95 91 68 72 92 65 64 65 0.73 1.00 0.56 0.74
2018 100 92 87 91 87 77 63 68 0.78 0.94 0.88 0.68
2020 88 100 86 65 89 87 69 62 0.89 0.84 0.83 0.85
2022 100 95 96 59 78 77 58 59 0.91 0.78 0.72 0.73
2023 84 83 75 71 73 75 74 72 0.92 0.75 0.75 0.56
Land Cover Class 3: Sebkha
2014 95 78 67 74 92 90 66 67 0.88 0.74 0.68 0.72
2017 85 93 88 72 78 87 69 81 0.78 0.81 0.55 0.56
2018 88 89 63 64 77 94 71 69 0.91 0.88 0.71 0.54
2020 94 75 64 69 93 85 72 65 1.00 0.64 0.75 0.78
2022 73 92 64 81 73 95 59 71 0.84 1.00 0.73 0.78
2023 69 68 76 83 67 89 73 72 0.91 0.90 0.74 0.84
Land Cover Class 4: Urban areas
2014 87 78 64 68 88 86 67 66 1.00 0.85 0.76 0.81
2017 94 79 69 64 92 75 61 72 0.95 1.00 0.82 0.73
2018 74 91 74 72 91 79 72 74 0.85 0.87 0.75 0.80
2020 69 80 65 76 84 64 68 68 1.00 0.79 0.81 0.69
2022 71 66 83 81 74 62 54 65 0.92 1.00 0.65 0.75
2023 83 65 72 83 79 75 59 71 0.87 0.72 0.69 0.73
Land Cover Class 5: Sahelian grassland
2014 87 81 65 67 82 90 83 81 0.93 0.74 0.95 0.91
2017 64 65 71 68 76 79 74 78 0.78 0.68 0.76 0.58
2018 78 72 73 57 79 91 68 63 1.00 0.83 0.73 0.79
2020 74 79 72 71 67 77 64 68 0.91 0.65 0.88 0.63
2022 88 82 71 82 81 80 72 69 0.53 1.00 0.54 0.77
2023 91 75 65 64 91 82 71 90 1.00 0.91 0.67 0.82
Land Cover Class 6: Salty sands
2014 88 72 67 63 91 79 68 67 0.98 0.73 0.73 0.78
2017 72 79 72 76 82 74 65 78 1.00 0.75 0.81 0.75
2018 91 90 64 78 90 78 71 81 1.00 0.81 0.76 0.69
2020 89 85 69 74 85 81 78 82 0.81 0.86 0.88 0.65
2022 90 84 56 71 78 90 64 89 0.84 0.91 0.72 0.67
2023 77 71 68 80 74 72 73 75 0.78 1.00 0.63 0.68
Land Cover Class 7: Compact soil
2014 89 78 67 63 89 81 69 63 0.88 0.73 0.65 0.61
2017 73 77 63 69 73 72 73 71 1.00 0.61 0.69 0.83
2018 78 69 72 65 85 85 74 70 0.85 0.68 0.81 0.95
2020 88 81 79 71 69 74 65 65 0.97 0.74 0.85 0.74
2022 91 90 80 75 70 78 69 69 0.83 1.00 0.72 0.61
2023 74 75 71 61 66 64 81 74 0.74 0.92 0.78 0.89
Land Cover Class 8: Stony desert and yellow dunes
2014 85 83 75 67 89 73 68 74 0.84 0.81 0.71 0.86
2017 78 88 78 69 93 84 69 82 0.75 1.00 0.82 0.92
2018 89 81 74 78 78 86 89 76 1.00 0.63 0.70 0.84
2020 92 79 91 71 95 72 81 81 0.72 0.79 0.62 0.70
2022 91 84 73 74 81 89 90 89 0.68 0.71 0.59 0.69
2023 84 75 75 73 73 90 83 73 0.66 0.65 0.60 0.76
Land Cover Class 9: Sandy desert and white dunes
2014 92 81 67 65 81 82 65 71 0.77 0.82 0.77 0.71
2017 83 89 72 81 84 78 78 78 0.81 0.73 0.81 0.55
2018 93 70 68 72 95 73 71 73 0.64 0.67 0.80 1.00
2020 78 93 80 68 88 89 83 67 1.00 0.54 0.68 0.75
2022 77 94 71 73 89 71 69 81 0.98 0.91 0.72 0.67
2023 74 85 81 79 73 69 62 66 0.90 1.00 0.74 0.79
Land Cover Class 10: Bare soil and rocks
2014 91 83 68 78 84 83 78 74 0.87 1.00 0.73 0.69
2017 89 82 63 72 83 78 73 75 0.81 0.74 0.77 0.57
2018 88 75 65 77 79 69 69 81 1.00 0.73 0.81 0.61
2020 79 69 73 64 74 71 74 67 0.74 0.69 0.80 0.74
2022 82 91 79 69 75 73 81 83 0.63 0.81 1.00 0.83
2023 77 80 75 71 82 95 83 74 0.84 0.68 0.65 0.80

Metadata of the multispectral satellite images Landsat 8-9 OLI/TIRS, used in this study, obtained from USGS1

Date Spacecraft / ID Path/row Entity product ID Scene ID Cloud/Coverage
27/04/2014 Landsat 8 205/47 LC08_L2SP_205047_20140427_20200911_02_T1 LC82050472014117LGN01 0.00
03/04/2017 Landsat 8 205/47 LC08_L2SP_205047_20170403_20200904_02_T1 LC82050472017093LGN00 0.04
22/04/2018 Landsat 8 205/47 LC08_L2SP_205047_20180422_20201015_02_T1 LC82050472018112LGN00 0.04
11/04/2020 Landsat 8 205/47 LC08_L2SP_205047_20200411_20200822_02_T1 LC82050472020102LGN00 0.17
09/04/2022 Landsat 8 205/47 LC09_L1TP_205047_20220409_20230422_02_T1 LC92050472022099LGN01 0.00
28/04/2023 Landsat 9 205/47 LC09_L2SP_205047_20230428_20230430_02_T1 LC92050472023118LGN00 0.01

Processing time of the satellite images Landsat-8 OLI/TIRS showing the effectiveness of ML methods executed by GRASS GIS

Method Processing time
Clustering <1 min
Min-max discriminant analysis ca. 25 sec
Random Forest Classifier 9 min
Decision Tree Classifier ca. 34 sec
Gradient Boosting Classifier 23 min
Support Vector Machine Classifier 47 min

Estimated classes of land cover types in western Mauritania, Sebkha de Ndrhamcha, for April_ Map units in measurements: 30 m resolution for each pixel on the multispectral scene of Landsat 8-9 OLI/TIRS_

Year Classes of land cover types in western Mauritania, Sebkha de Ndrhamcha
1 2 3 4 5 6 7 8 9 10
2014 1410 4 30 79 202 708 1239 1581 1493 178
2017 1386 43 70 141 215 668 1056 1742 1548 144
2018 1384 21 78 110 182 598 1195 1975 1353 117
2020 1395 2 28 145 228 582 881 2502 1231 20
2022 1443 2 20 116 197 532 970 2567 1146 40
2023 1468 31 53 136 253 538 1153 1622 1577 206
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Nauki o Ziemi, Nauki o Ziemi, inne