This work is licensed under the Creative Commons Attribution 4.0 International License.
Caron, L. et al. (2018) ‘GIA Model Statistics for GRACE Hydrology, Cryosphere, and Ocean Science’, Geophysical Research Letters, 45(5), pp. 2203–2212. Available at: https://doi.org/10.1002/2017GL076644.CaronL.et al. (2018) ‘GIA Model Statistics for GRACE Hydrology, Cryosphere, and Ocean Science’, Geophysical Research Letters, 45(5), pp. 2203–2212. Available at: https://doi.org/10.1002/2017GL076644.Search in Google Scholar
Chambers, D. (2006) ‘Evaluation of new GRACE Time-Variable Gravity Data over the ocean’, Geophysical Research Letters - GEOPHYS RES LETT, 331. Available at: https://doi.org/10.1029/2006GL027296.ChambersD. (2006) ‘Evaluation of new GRACE Time-Variable Gravity Data over the ocean’, Geophysical Research Letters-GEOPHYS RES LETT, 331. Available at: https://doi.org/10.1029/2006GL027296.Search in Google Scholar
Chambers, D.P. et al. (2007) ‘Effects of ice melting on GRACE observations of ocean mass trends’, Geophysical Research Letters, 34(5). Available at: https://doi.org/10.1029/2006GL029171.ChambersD.P.et al. (2007) ‘Effects of ice melting on GRACE observations of ocean mass trends’, Geophysical Research Letters, 34(5. Available at: https://doi.org/10.1029/2006GL029171.Search in Google Scholar
Chambers, D.P. (2015) ‘3.05 - Gravimetric Methods – Satellite Altimeter Measurements’, in G. Schubert (ed.) Treatise on Geophysics. Oxford: Elsevier (3), pp. 117–149. Available at: https://doi.org/10.1016/B978-0-444-53802-4.00063-4.ChambersD.P. (2015) ‘3.05-Gravimetric Methods–Satellite Altimeter Measurements’, in SchubertG. (ed.) Treatise on Geophysics. Oxford: Elsevier (3), pp. 117–149. Available at: https://doi.org/10.1016/B978-0-444-53802-4.00063-4.Search in Google Scholar
Chen, J.L., Wilson, C.R. and Tapley, B.D. (2013) ‘Contribution of ice sheet and mountain glacier melt to recent sea level rise’, Nature Geoscience, 6(7), pp. 549–552. Available at: https://doi.org/10.1038/ngeo1829.ChenJ.L.WilsonC.R.TapleyB.D. (2013) ‘Contribution of ice sheet and mountain glacier melt to recent sea level rise’, Nature Geoscience, 6(7pp. 549–552. Available at: https://doi.org/10.1038/ngeo1829.Search in Google Scholar
Chiriaco, M. et al. (2014) ‘European heatwave in July 2006: Observations and modeling showing how local processes amplify conducive large-scale conditions’, Geophysical Research Letters, 41(15), pp. 5644–5652. Available at: https://doi.org/10.1002/2014GL060205.ChiriacoM.et al. (2014) ‘European heatwave in July 2006: Observations and modeling showing how local processes amplify conducive large-scale conditions’, Geophysical Research Letters, 41(15), pp. 5644–5652. Available at: https://doi.org/10.1002/2014GL060205.Search in Google Scholar
Cortés Arbués, I. et al. (2024) ‘Distribution of economic damages due to climate-driven sea-level rise across European regions and sectors’, Scientific Reports, 14(1), p. 126. Available at: https://doi.org/10.1038/s41598-023-48136-y.Cortés ArbuésI.et al. (2024) ‘Distribution of economic damages due to climate-driven sealevel rise across European regions and sectors’, Scientific Reports, 14(1), p. 126. Available at: https://doi.org/10.1038/s41598-023-48136-y.Search in Google Scholar
Donlon, C. et al. (2012) ‘The Global Monitoring for Environment and Security (GMES) Sentinel-3 Mission’, Remote Sensing of Environment [Preprint]. Available at: https://doi.org/10.1016/j.rse.2011.07.024.DonlonC.et al. (2012) ‘The Global Monitoring for Environment and Security (GMES) Sentinel-3 Mission’, Remote Sensing of Environment [Preprint]. Available at: https://doi.org/10.1016/j.rse.2011.07.024.Search in Google Scholar
Durack, P.J., Wijffels, S.E. and Gleckler, P.J. (2014) ‘Long-term sea-level change revisited: the role of salinity’, Environmental Research Letters, 9(11), p. 114017. Available at: https://doi.org/10.1088/1748-9326/9/11/114017.DurackP.J.WijffelsS.E.GlecklerP.J. (2014) ‘Long-term sea-level change revisited: the role of salinity’, Environmental Research Letters, 9(11), p. 114017. Available at: https://doi.org/10.1088/1748-9326/9/11/114017.Search in Google Scholar
Dutheil, C. et al. (2022) ‘Warming of Baltic Sea water masses since 1850’, Climate Dynamics [Preprint]. Available at: https://doi.org/10.1007/s00382-022-06628-z.DutheilC.et al. (2022) ‘Warming of Baltic Sea water masses since 1850’, Climate Dynamics [Preprint]. Available at: https://doi.org/10.1007/s00382-022-06628-z.Search in Google Scholar
Granskog, M. et al. (2006) ‘Sea ice in the Baltic Sea – A review’, Estuarine, Coastal and Shelf Science, 70(1), pp. 145–160. Available at: https://doi.org/10.1016/j.ecss.2006.06.001.GranskogM.et al. (2006) ‘Sea ice in the Baltic Sea–A review’, Estuarine, Coastal and Shelf Science, 70(1), pp. 145–160. Available at: https://doi.org/10.1016/j.ecss.2006.06.001.Search in Google Scholar
Kang, Z. et al. (2020) ‘GRACE-FO precise orbit determination and gravity recovery’, Journal of Geodesy, 94(9), p. 85. Available at: https://doi.org/10.1007/s00190-020-01414-3.KangZ.et al. (2020) ‘GRACE-FO precise orbit determination and gravity recovery’, Journal of Geodesy, 94(9), p. 85. Available at: https://doi.org/10.1007/s00190-020-01414-3.Search in Google Scholar
Kapsi, I., Kall, T. and Liibusk, A. (2023) ‘Sea Level Rise and Future Projections in the Baltic Sea’, Journal of Marine Science and Engineering, 11(8), p. 1514. Available at: https://doi.org/10.3390/jmse11081514.KapsiI.KallT.LiibuskA. (2023) ‘Sea Level Rise and Future Projections in the Baltic Sea’, Journal of Marine Science and Engineering, 11(8), p. 1514. Available at: https://doi.org/10.3390/jmse11081514.Search in Google Scholar
Kowalczyk, K. (2019) ‘Changes in mean sea level on the coast of Baltic Sea on tide gouge data from years 1811_2015’, Acta Geodynamica et Geomaterialia, pp. 195–209. Available at: https://doi.org/10.13168/AGG.2019.0016.KowalczykK. (2019) ‘Changes in mean sea level on the coast of Baltic Sea on tide gouge data from years 1811_2015’, Acta Geodynamica et Geomaterialia, pp. 195–209. Available at: https://doi.org/10.13168/AGG.2019.0016.Search in Google Scholar
Liibusk, A. et al. (2020) ‘Validation of Copernicus Sea Level Altimetry Products in the Baltic Sea and Estonian Lakes’, Remote Sensing, 12(24), p. 4062. Available at: https://doi.org/10.3390/rs12244062.LiibuskA.et al. (2020) ‘Validation of Copernicus Sea Level Altimetry Products in the Baltic Sea and Estonian Lakes’, Remote Sensing, 12(24), p. 4062. Available at: https://doi.org/10.3390/rs12244062.Search in Google Scholar
Łyszkowicz, A. and Bernatowicz, A. (2019) ‘Geocentric Baltic Sea level changes along the southern coastline’, Advances in Space Research, 64(9), pp. 1807–1815. Available at: https://doi.org/10.1016/j.asr.2019.07.040.ŁyszkowiczA.BernatowiczA. (2019) ‘Geocentric Baltic Sea level changes along the southern coastline’, Advances in Space Research, 64(9), pp. 1807–1815. Available at: https://doi.org/10.1016/j.asr.2019.07.040.Search in Google Scholar
Masters, D. et al. (2012) ‘Comparison of Global Mean Sea Level Time Series from TOPEX/Poseidon, Jason-1, and Jason-2’, Marine Geodesy, 35(sup1), pp. 20–41. Available at: https://doi.org/10.1080/01490419.2012.717862.MastersD.et al. (2012) ‘Comparison of Global Mean Sea Level Time Series from TOPEX/Poseidon, Jason-1, and Jason-2’, Marine Geodesy, 35(sup1), pp. 20–41. Available at: https://doi.org/10.1080/01490419.2012.717862.Search in Google Scholar
Medvedev, I.P., Rabinovich, A.B. and Kulikov, E.A. (2013) ‘Tidal oscillations in the Baltic Sea’, Oceanology, 53(5), pp. 526–538. Available at: https://doi.org/10.1134/S0001437013050123.MedvedevI.P.RabinovichA.B.KulikovE.A. (2013) ‘Tidal oscillations in the Baltic Sea’, Oceanology, 53(5), pp. 526–538. Available at: https://doi.org/10.1134/S0001437013050123.Search in Google Scholar
Milne, G.A. et al. (2009) ‘Identifying the causes of sea-level change’, Nature Geoscience, 2(7), pp. 471–478. Available at: https://doi.org/10.1038/ngeo544.MilneG.A.et al. (2009) ‘Identifying the causes of sea-level change’, Nature Geoscience, 2(7), pp. 471–478. Available at: https://doi.org/10.1038/ngeo544.Search in Google Scholar
Pajak, K. and Kowalczyk, K. (2018) ‘Assessment of the dynamics of sea level and physical phenomena in the Baltic sea’, Geodetski vestnik, 62(03), pp. 430–444. Available at: https://doi.org/10.15292/geodetski-vestnik.2018.03.430-444.PajakK.KowalczykK. (2018) ‘Assessment of the dynamics of sea level and physical phenomena in the Baltic sea’, Geodetski vestnik, 62(03430444. Available at: https://doi.org/10.15292/geodetski-vestnik.2018.03.430-444.Search in Google Scholar
Pajak, K. and Kowalczyk, K. (2019) ‘A comparison of seasonal variations of sea level in the southern Baltic Sea from altimetry and tide gauge data’, Advances in Space Research, 63(5), pp. 1768–1780. Available at: https://doi.org/10.1016/j.asr.2018.11.022.PajakK.KowalczykK. (2019) ‘A comparison of seasonal variations of sea level in the southern Baltic Sea from altimetry and tide gauge data’, Advances in Space Research, 63(5), pp. 1768–1780. Available at: https://doi.org/10.1016/j.asr.2018.11.022.Search in Google Scholar
Rebetez, M., Dupont, O. and Giroud, M. (2009) ‘An analysis of the July 2006 heatwave extent in Europe compared to the record year of 2003’, Theoretical and Applied Climatology, 95(1), pp. 1–7. Available at: https://doi.org/10.1007/s00704-007-0370-9.RebetezM.DupontO.GiroudM. (2009) ‘An analysis of the July 2006 heatwave extent in Europe compared to the record year of 2003’, Theoretical and Applied Climatology, 95(1), pp. 1–7. Available at: https://doi.org/10.1007/s00704-007-0370-9.Search in Google Scholar
Save, H., Bettadpur, S. and Tapley, B.D. (2016) ‘High-resolution CSR GRACE RL05 mascons’, Journal of Geophysical Research: Solid Earth, 121(10), pp. 7547–7569. Available at: https://doi.org/10.1002/2016JB013007.SaveH.BettadpurS.TapleyB.D. (2016) ‘High-resolution CSR GRACE RL05 mascons’, Journal of Geophysical Research: Solid Earth, 121(10), pp. 7547–7569. Available at: https://doi.org/10.1002/2016JB013007.Search in Google Scholar
Śliwińska, J. and Nastula, J. (2023) ‘Assessing the impact of corrections included in the GRACE Level-3 data on gravimetric polar motion excitation estimates’, Journal of Geodesy, 97(6), p. 60. Available at: https://doi.org/10.1007/s00190-023-01739-9.ŚliwińskaJ.NastulaJ. (2023) ‘Assessing the impact of corrections included in the GRACE Level-3 data on gravimetric polar motion excitation estimates’, Journal of Geodesy, 97(6), p. 60. Available at: https://doi.org/10.1007/s00190-023-01739-9.Search in Google Scholar
Steffen, H., Müller, J. and Denker, H. (2009) ‘Analysis of Mass Variations in Northern Glacial Rebound Areas from GRACE Data’, in M.G. Sideris (ed.) Observing our Changing Earth. Berlin, Heidelberg: Springer (International Association of Geodesy Symposia), pp. 501–509. Available at: https://doi.org/10.1007/978-3-540-85426-5_60.SteffenH.MüllerJ.DenkerH. (2009) ‘Analysis of Mass Variations in Northern Glacial Rebound Areas from GRACE Data’, in SiderisM.G. (ed.) Observing our Changing Earth. Berlin, Heidelberg: Springer (International Association of Geodesy Symposia), pp. 501–509. Available at: https://doi.org/10.1007/978-3-540-85426-5_60.Search in Google Scholar
Stramska, M., Kowalewska-Kalkowska, H. and Świrgoń, M. (2013) ‘Seasonal variability in the Baltic Sea level’, Oceanologia, 55(4), pp. 787–807. Available at: https://doi.org/10.5697/oc.55-4.787.StramskaM.Kowalewska-KalkowskaH.ŚwirgońM. (2013) ‘Seasonal variability in the Baltic Sea level’, Oceanologia, 55(4), pp. 787–807. Available at: https://doi.org/10.5697/oc.55-4.787.Search in Google Scholar
Strugarek, D. et al. (2019) ‘Determination of Global Geodetic Parameters Using Satellite Laser Ranging Measurements to Sentinel-3 Satellites’, Remote Sensing, 11(19), p. 2282. Available at: https://doi.org/10.3390/rs11192282.StrugarekD.et al. (2019) ‘Determination of Global Geodetic Parameters Using Satellite Laser Ranging Measurements to Sentinel-3 Satellites’, Remote Sensing, 11(19), p. 2282. Available at: https://doi.org/10.3390/rs11192282.Search in Google Scholar
Tapley, B. et al. (2019) ‘Contributions of GRACE to understanding climate change’, Nature Climate Change, 5. Available at: https://doi.org/10.1038/s41558-019-0456-2.TapleyB.et al. (2019) ‘Contributions of GRACE to understanding climate change’, Nature Climate Change, 5. Available at: https://doi.org/10.1038/s41558-019-0456-2.Search in Google Scholar
Tapley, B.D. et al. (2004) ‘GRACE Measurements of Mass Variability in the Earth System’, Science, 305(5683), pp. 503–505. Available at: https://doi.org/10.1126/science.1099192.TapleyB.D.et al. (2004) ‘GRACE Measurements of Mass Variability in the Earth System’, Science, 305(5683), pp. 503–505. Available at: https://doi.org/10.1126/science.1099192.Search in Google Scholar
Wahr, J. and Velicogna, I. (2003) ‘What Might GRACE Contribute to Studies of Post Glacial Rebound?’, Space Science Reviews, 108(1), pp. 319–330. Available at: https://doi.org/10.1023/A:1026183526762.WahrJ.VelicognaI. (2003) ‘What Might GRACE Contribute to Studies of Post Glacial Rebound?’, Space Science Reviews, 108(1), pp. 319–330. Available at: https://doi.org/10.1023/A:1026183526762.Search in Google Scholar
Watson, C.S. et al. (2015) ‘Unabated global mean sea-level rise over the satellite altimeter era’, Nature Climate Change, 5(6), pp. 565–568. Available at: https://doi.org/10.1038/nclimate2635.WatsonC.S.et al. (2015) ‘Unabated global mean sea-level rise over the satellite altimeter era’, Nature Climate Change, 5(6), pp. 565–568. Available at: https://doi.org/10.1038/nclimate2635.Search in Google Scholar