Magnetic Separation of Lunar Regolith as its Beneficiation for Construction Effort on the Moon
, oraz
29 gru 2023
O artykule
Data publikacji: 29 gru 2023
Zakres stron: 203 - 213
Otrzymano: 03 gru 2022
Przyjęty: 13 cze 2023
DOI: https://doi.org/10.2478/arsa-2023-0023
Słowa kluczowe
© 2023 Janusz Kobaka et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Simulants used in the tests
LHS-1 | Exolith Lab | The USA | Lunar highlands simulant | 1.36 |
AGK2010 | AGH | Poland | General lunar simulant (the only analog available in Poland in a large quantity) | 1.35 |
OPRL2N | Off Planet Research | The USA | Lunar mare simulant | 1.28 |
JSC 1A | NASA and the Johnson Space Center | The USA | Lunar regolith simulant | 1.56 |
CHENOBI | Deltion Innovations Ltd. | Canada | General lunar simulant | 1.39 |
LMS-1 | Exolith Lab | The USA | Lunar mare simulant | 1.62 |
ESA 06-A | European Space Agency | The EU | Iceland basaltic sand | 1.35 |
ESA 01-E | European Space Agency | The EU | 3 mm basalt aggregate | 1.53 |
UoM-B | University of Manchester | GB | Volcanic black dust/slag or iron ore | 1.36 |
UoM-W | University of Manchester | GB | Crushed, dried, and graded glass sand | 0.95 |
Ferromagnetic fraction after magnetic separation_
1 | LHS-1 | 11.44 |
2 | AGK2010 | 0.86 |
3 | OPRL2N | 97.06 |
4 | JSC 1A | 68.66 |
5 | CHENOBI | 4.48 |
6 | LMS-1 | 47.48 |
7 | ESA 06-A | 15.42 |
8 | ESA 01-E | 63.78 |
9 | UoM-B | 99.70 |
10 | UoM-W | 0.00 |