[
Achukwi M.D., Ibeagha-Awemu E.M., Musongong G.A., Erhardt G. (2009). Doayo (Namchi) Bos taurus cattle with low zebu attributes are trypanotolerant under natural vector challenge. Online J. Vet. Res., 13: 94–105.
]Search in Google Scholar
[
Adane H., Girma A. (2008). Economic significance of sheep and goats. In: Sheep and Goat Production Handbook for Ethiopia, Alemu Y., Merkel R.C. (eds). Brana Publishing House, pp. 2–4.
]Search in Google Scholar
[
Adesehinwa A.O.K., Boladuro B.A., Dunmade A.S., Idowu A.B., Moreki J.C., Wachira A.M. (2024). Pig production in Africa: current status, challenges, prospects and opportunities. Anim. Biosci., 37: 730–741.
]Search in Google Scholar
[
Afolabi K.D. (2013). Local or indigenous chicken production: A key to food security, poverty alleviation, disease mitigation and socio-cultural fulfilment in Africa. In: Sustainable food security in the era of local and global environmental change, Behnassi M., Pollmann O., Kissinger G. (eds). Springer Dordrecht Heidelberg, New York, USA, pp. 217–229.
]Search in Google Scholar
[
Akbari M., Foroudi P., Shahmoradi M., Padash H., Parizi Z.S., Khosravani A., Ataei P., Cuomo M.T. (2022). The evolution of food security: Where are we now, where should we go next? Sustainability, 14: 3634.
]Search in Google Scholar
[
Alders R.G., Pym R.A.E. (2009). Village poultry: still important to millions, eight thousand years after domestication. World. Poult. Sci. J., 65: 181–190.
]Search in Google Scholar
[
Alders R.G., Campbell A., Costa R., Guèye E.F., Hoque MdA., Perezgrovas-Garza R., Rota A., Wingett K. (2021). Livestock across the world: diverse animal species with complex roles in human societies and ecosystem services. Anim. Front., 11: 20–29.
]Search in Google Scholar
[
Aleena J., Sejian V., Bagath M., Krishnan G., Beena V., Bhatta R. (2018). Resilience of three indigenous goat breeds to heat stress based on phenotypic traits and PBMC HSP70 expression. Int. J. Biometeorol., 62: 1995–2005.
]Search in Google Scholar
[
Alexandratos N., Bruinsma J. (2012). World Agriculture towards 2030/2050: The 2012 Revision. ESA Working Paper, 12-03, FAO, Rome, Italy.
]Search in Google Scholar
[
Anghinoni G., Anghinoni F.B.G., Tormena C.A., Braccini A.L., Mendes I.D.C., Zancanaro L., Lal R. (2021). Conservation agriculture strengthens the sustainability of Brazilian grain production and food security. Land Use Policy, 108: 105591.
]Search in Google Scholar
[
Ardakani Z., Bartolini F., Brunori G. (2020). New evaluation of small farms: Implications for an analysis of food security. Agriculture, 10: 74.
]Search in Google Scholar
[
Ariza A.G., Arbulu A.A., González F.J.N., Morales F.R., Jurado J.M.L., Capote C.J.B., Camacho V.M.E. (2019). Sensory preference and professional profile affinity definition of endangered native breed eggs compared to commercial laying lineages’ eggs. Animals, 9: 920.
]Search in Google Scholar
[
Aryee S.N.D., Osei-Amponsah R., Adjei O.D., Ahunu B.K., Skinner B.M., Sargent C.A. (2019). Production practices of local pig farmers in Ghana. Int. J. Lives. Prod., 10: 175–181.
]Search in Google Scholar
[
Bakheit M.A., Latif A.A. (2002). The innate resistance of Kenana cattle to tropical theileriosis (Theileria annulata infection) in the Sudan. Ann. N. Y. Acad. Sci., 969: 159–163.
]Search in Google Scholar
[
Barłowska J. (2023). Certified regional food as an important element for preserving the biodiversity of farm animals (in Polish). Postępy Nauk. Techn. Przem. Rolno-Spoż., 77: 80–103.
]Search in Google Scholar
[
Barłowska J., Litwińczuk Z. (2006). Technological usefulness of milk from two local breeds maintained in the regions with great grassland share. Arch. Anim. Tierz., 49: 207–213.
]Search in Google Scholar
[
Barłowska J., Szwajkowska M., Litwińczuk Z., Król J. (2011). Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr. Rev. Food Sci. Food Saf., 10: 291–302.
]Search in Google Scholar
[
Barłowska J., Florek M., Litwińczuk Z. (2016). Food Production –Quantity or Quality? Part I (in Polish). Przem. Spoż., 70: 8–12.
]Search in Google Scholar
[
Barłowska J., Pastuszka R., Rysiak A., Król J., Brodziak A., Kędzierska-Matysek M., Wolanciuk A., Litwińczuk Z. (2018). Physicochemical and sensory properties of goat cheeses and their fatty acid profile in relation to the geographic region of production. Int. J. Dairy Technol., 71: 699–708.
]Search in Google Scholar
[
Barłowska J., Pastuszka R., Domaradzki P., Król J., Brodziak A., Teter A., Rysiak A. (2019). Fat dispersion and fatty acid profile, including health indicators in goat milk from different flora composition of grazing sites. Anim. Sci. Pap. Rep., 37: 365–377.
]Search in Google Scholar
[
Barłowska J., Sawicka-Zugaj W., Ślaska B., Król J., Brodziak A., Teter A., Chabuz W. (2022). Genetic analysis of CSN2 in local and international cattle breeds raised in Poland. Anim. Sci. Pap. Rep., 40: 411–422.
]Search in Google Scholar
[
Barłowska J., Polak G., Janczarek I., Tkaczyk E. (2023 a). The influence of selected factors on the nutritional value of the milk of cold-blooded mares: The example of the Sokólski breed. Animals, 13: 1152.
]Search in Google Scholar
[
Barłowska J., Polak G., Janczarek I., Próchniak T. (2023 b). Chemical composition, whey protein profile, and fatty acid profile of milk from Sokólski horses in relation to Polish Halfbred horses. Ann. Anim. Sci., 23: 587–596.
]Search in Google Scholar
[
Barrea L., Grant W.B., Frias-Toral E., Vetrani C., Verde L., de Alteriis G., Docimo A., Savastano S., Colao A., Muscogiuri G. (2022). Dietary recommendations for Post-COVID-19 syndrome. Nutrients, 14: 1305.
]Search in Google Scholar
[
Bayssa M., Yigrem S., Betsha S., Tolera A. (2021). Production, reproduction and some adaptation characteristics of Boran cattle breed under changing climate: A systematic review and meta-analysis. PloS one, 16: e0244836.
]Search in Google Scholar
[
Belaunzaran X., Bessa R.J.B., Lavín P., Mantecón A.R., Kramer J.K.G., Aldai N. (2015). Horse meat for human consumption–Current research and future opportunities. Meat Sci., 108: 74–81.
]Search in Google Scholar
[
Belhaj K., Mansouri F., Tikent A., Taaifi Y., Boukharta M., Serghini H.C., Elamrani A. (2021). Effect of age and breed on carcass and meat quality characteristics of Beni-Guil and Ouled-Djellal sheep breeds. Sci. World J., 1: 5536793.
]Search in Google Scholar
[
Berman A. (2011). Invited review: Are adaptations present to support dairy cattle productivity in warm climates? J. Dairy Sci., 94: 2147–2158.
]Search in Google Scholar
[
Birhanu M.Y., Osei-Amponsah R., Obese F.Y., Dessie T. (2023). Smallholder poultry production in the context of increasing global food prices: roles in poverty reduction and food security. Anim. Front., 13: 17–25.
]Search in Google Scholar
[
Bittante G., Penasa M., Cecchinato A. (2012). Invited review: Genetics and modeling of milk coagulation properties. J. Dairy Sci., 95: 6843–6870.
]Search in Google Scholar
[
Blasco A. (2008). Breeds in danger of extinction and biodiversity. Rev. Bras. Zootecn., 37: 101–109.
]Search in Google Scholar
[
Brodziak A., Król J., Barłowska J., Litwińczuk Z., Teter A., Kędzierska-Matysek M. (2020). Differences in bioactive protein and vitamin status of milk obtained from Polish local breeds of cows. Ann. Anim. Sci., 20: 287–298.
]Search in Google Scholar
[
Calik J., Połtowicz K., Świątkiewicz S., Krawczyk J., Nowak J. (2015). Effect of caponization on meat quality of Greenleg Partridge cockerels. Ann. Anim. Sci., 15: 541–553.
]Search in Google Scholar
[
Chen L., Chang J., Wang Y., Guo A., Liu Y., Wang Q., Zhu Y., Zhang Y., Xie Z. (2021). Disclosing the future food security risk of China based on crop production and water scarcity under diverse socioeconomic and climate scenarios. Sci. Total Environ., 790: 148110.
]Search in Google Scholar
[
Chiejina S.N., Behnke J.M. (2011). The unique resistance and resilience of the Nigerian West African Dwarf goat to gastrointestinal nematode infections. Parasite. Vector., 4: 1–10.
]Search in Google Scholar
[
Chiofalo V., Maldonato R., Martin B., Dupont D., Coulon J.B. (2000). Chemical composition and coagulation properties of Modicana and Holstein cows’ milk. Ann. Zootech., 49: 497–503.
]Search in Google Scholar
[
Cittadini A., Sarriés M.V., Domínguez R., Indurain G., Lorenzo J.M. (2021). Effect of breed and finishing diet on growth parameters and carcass quality characteristics of Navarre autochthonous foals. Animals, 11: 488.
]Search in Google Scholar
[
Ciurescu G., Idriceanu L., Gheorghe A., Ropotă M., Drăghici R. (2022). Meat quality in broiler chickens fed on cowpea (Vigna unguiculata [L.] Walp) seeds. Sci. Rep., 12: 9685.
]Search in Google Scholar
[
Collomb M., Bütikofer U., Sieber R., Jeangros B., Bosset J-O. (2002). Composition of fatty acids in cow’s milk fat produced in the lowlands, mountains and highlands of Switzerland using high-resolution gas chromatography. Int. Dairy J., 12: 649–659.
]Search in Google Scholar
[
Czarniecka-Skubina E., Pielak M. (2017). Traditional foods versus foods produced using modern technology. Vistula Univ. Work. Pap., 54: 165–178.
]Search in Google Scholar
[
De Marchi M., Dal Zotto R., Cassandro M., Bittante G. (2007). Milk coagulation ability of five dairy cattle breeds. J. Dairy Sci., 90: 3986–3992.
]Search in Google Scholar
[
Demir E., Ceccobelli S., Bilginer U., Pasquini M., Attard G., Karsli T. (2022). Conservation and selection of genes related to environmental adaptation in native small ruminant breeds: a review. Ruminants, 2: 255–270.
]Search in Google Scholar
[
Devendra C. (2005). Small ruminants in Asia; Contribution to food security, poverty alleviation and opportunities for productivity enhancement. Proc. International Workshop on Small Ruminant Production and Development, South East Asia, Ho Chi Minh City, Vietnam, 2–4.03. 2005, pp. 19–32.
]Search in Google Scholar
[
Devendra C., Liang J.B. (2012). Conference summary of dairy goats in Asia: Current status, multifunctional contribution to food security and potential improvements. Small Rumin. Res., 108: 1–11.
]Search in Google Scholar
[
Di Gregorio D., Bognanno M., Laganà V. R., Nicolosi A. (2022). Local proximity cheeses: Choices that guide consumers and orient producers –Case studies. Sustainability, 15: 740.
]Search in Google Scholar
[
Di Trana A., Sepe L., Di Gregorio P., Di Napoli M.A., Giorgio D., Caputo A.R., Claps S. (2015). The role of local sheep and goat breeds and their products as a tool for sustainability and safeguard of the Mediterranean environment. In: The Sustainability of Agro-Food and Natural Resource Systems in the Mediterranean Basin, Vastola A. (ed.) Springer Cham, Potenza, Italy, pp. 77–112.
]Search in Google Scholar
[
Dinc H., Ozkan E., Koban E., Togan I. (2013). Beta-casein A1/A2, kappa-casein and beta-lactoglobulin polymorphisms in Turkish cattle breeds. Arch. Anim. Breed., 56: 650–657.
]Search in Google Scholar
[
Djemali M. (2024). Unlocking the potential of sheep and goat genetics in developing countries. W. J. Adv. Res. Rev., 21: 1959–1965.
]Search in Google Scholar
[
Domaradzki P., Litwińczuk Z., Florek M., Żółkiewski P. (2017). Effect of ageing on the physicochemical properties of musculus longissimus lumborum of young bulls of five breeds. Med. Weter., 73: 802–810.
]Search in Google Scholar
[
Dovc P. (2007). Local breeds and their potential for progress in animal breeding. Stočarstvo: Časopis za unapređenje stočarstva, 61: 463–466.
]Search in Google Scholar
[
FAO (2007). Food and Agriculture Organization of the United Nations. The state of the world’s animal genetic resources for food and agriculture, Rischkowsky B., Pilling. D. (eds). Rome, Italy, pp. 511.
]Search in Google Scholar
[
FAO (2011). Food and Agriculture Organization of the United Nations. World Livestock 2011 –Livestock in food security, McLeod A. (ed.). Rome, Italy, pp. 115.
]Search in Google Scholar
[
FAO (2017). Food and Agriculture Organization of the United Nations. The state of food and agriculture. Leveraging food systems for inclusive rural transformation. Rome, Italy, 160 pp.
]Search in Google Scholar
[
FAO (2021). Food and Agriculture Organization of the United Nations, International Fund for Agricultural Development (IFAD), United Nations Children’s Fund (UNICEF), World Food Programme (WFP), World Health Organization (WHO). The State of Food Security and Nutrition in the World 2021. Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All. FAO, Rome, Italy.
]Search in Google Scholar
[
FAO (2022). Food and Agriculture Organization of the United Nations. Impact of the Ukraine-Russia conflict on global food security and related matters under the mandate of the Food and Agriculture Organization of the United Nations. Rome, Italy, CL 170/6.
]Search in Google Scholar
[
FAO (2023). Food and Agriculture Organization of the United Nations. Status and trends of animal genetic resources –2022. FAO, Rome, Italy.
]Search in Google Scholar
[
FAO (2023). Food and Agriculture Organization of the United Nations, International Fund for Agricultural Development (IFAD), United Nations Children’s Fund (UNICEF), World Food Programme (WFP), World Health Organization (WHO). The State of Food Security and Nutrition in the World 2023. Urbanization, agrifood systems transformation and healthy diets across the rural–urban continuum. The State of Food Security and Nutrition in the World (SOFI), Roma, Italy, pp. 316.
]Search in Google Scholar
[
FAO (2024). Food and Agriculture Organizations of the United Nations. Center for Veterinary Medicine. United States Food and Drug Administration. Global feed safety platform. Online access: https://www.fao.org/feed-safety/databases/organizations-institutions/institutions-details/en/c/1025182/ (accessed: 21.08.2024).
]Search in Google Scholar
[
FAOSTAT (2023). FAOSTAT production data. Online access: https://www.fao.org/faostat/en/#data/OA (accessed: 21.08.2024).
]Search in Google Scholar
[
Fortina R., Barbera S., Lussiana C., Mimosi A., Tassone S., Rossi A., Zanardi E. (2005). Performances and meat quality of two Italian pig breeds fed diets for commercial hybrids. Meat Sci., 71: 713–718.
]Search in Google Scholar
[
Franci O., Bozzi R., Pugliese C. Acciaioli A., Campodoni G., Gandini G. (2005). Performance of Cinta Senese pigs and their crosses with Large White. 1. Muscle and subcutaneous fat characteristics. Meat Sci., 69: 545–550.
]Search in Google Scholar
[
Gandini G., Martín-Collado D., Colinet F., Duclos D., Hiemstra S.J., Soini K., EURECA consortium, Díaz C. (2012). Farmer’s views and values to focus on cattle conservation policies: the case of eight European countries. J. Anim. Breed. Genet., 29: 427–435.
]Search in Google Scholar
[
Garbayo E.D. (2016). El Ibérico: Una visión global. Solo Cerdo Iberico, 36: 122–132.
]Search in Google Scholar
[
Gaughan J., Cawdell-Smith A.J. (2015). Impact of climate change on livestock production and reproduction. In: Climate change impact on livestock: adaptation and mitigation, Sejian V., Gaughan J., Baumgard L., Prasad C. (eds). Springer, New Delhi, Indie, pp. 51–60.
]Search in Google Scholar
[
Gheyas A.A., Vallejo-Trujillo A., Kebede A., Lozano-Jaramillo M., Dessie T., Smith J., Hanotte O. (2021). Integrated environmental and genomic analysis reveals the drivers of local adaptation in African indigenous chickens. Mol. Biol. Evol., 38: 4268–4285.
]Search in Google Scholar
[
Godfray H.C.J., Garnett T. (2014). Food security and sustainable intensification. Phil. Trans. R. Soc. B. 369: 20120273.
]Search in Google Scholar
[
Govindasamy K., Gonmei C., Singh N.S., Singh N.M. (2022). Thermal stress-related physiological, behavioral, and serum biochemical responses in indigenous pigs adapted to Eastern Himalayan region. Front. Vet. Sci., 9: 1034635.
]Search in Google Scholar
[
Guan R., Lyu F., Chen X., Ma J., Jiang H., Xiao C. (2013). Meat quality traits of four Chinese indigenous chicken breeds and one commercial broiler stock. J. Zhejiang Univ-Sci. B (Biomed. & Biotechnol.), 14: 896–902.
]Search in Google Scholar
[
Guèye H.F. (1998). Village egg and fowl meat production in Africa. J. World. Poult. Sci., 54: 82–86.
]Search in Google Scholar
[
Hassen T.B., El Bilali H. (2022). Impacts of the Russia-Ukraine war on global food security: Towards more sustainable and resilient food systems? Foods, 11: 2301.
]Search in Google Scholar
[
Hiemstra S.J., de Haas Y., Mäki-Tanila A., Gandini G. (2010). Local cattle breeds in Europe. Development of policies and strategies for self-sustaining breeds. Wageningen Academic Publishers, The Netherlands, 154 pp..
]Search in Google Scholar
[
Hlongwane N.L., Hadebe K., Soma P., Dzomba E.F., Muchadeyi F.C. (2020). Genome-wide assessment of genetic variation and population distinctiveness of the pig family in South Africa. Front. Genet., 11: 344.
]Search in Google Scholar
[
Hoffmann I. (2010). Climate change and the characterization, breeding and conservation of animal genetic resources. Anim. Genet., 41: 32–46.
]Search in Google Scholar
[
Horrillo A., Gaspar P., Muñoz A., Escribano M., González E. (2023). Fattening Iberian pigs indoors vs. outdoors: Production performance and market value. Animals, 13: 506.
]Search in Google Scholar
[
Ickowitz A., Powell B., Rowland D., Jones A., Sunderland T. (2019). Agricultural intensification, dietary diversity, and markets in the global food security narrative. Glob. Food Sec., 20: 9–16.
]Search in Google Scholar
[
Insausti K., Beldarrain L.R., Lavín M.P., Aldai N., Mantecón Á.R., Sáez J.L., Canals R.M. (2021). Horse meat production in northern Spain: ecosystem services and sustainability in High Nature Value farmland. Anim. Front., 11: 47–54.
]Search in Google Scholar
[
Jambo Y., Alemu A., Tasew W. (2021). Impact of small-scale irrigation on household food security: evidence from Ethiopia. Agric Food Secur., 10: 21.
]Search in Google Scholar
[
Janiszewski P., Grześkowiak E., Lisiak D., Szulc K., Borzuta K. (2015). Quality and technological suitability of pork meat from Zlotnicka Spotted pigs and their crossbreeds with Duroc and Polish Large White. Sci. Ann. Pol. Soc. Anim. Prod., 11: 83–93.
]Search in Google Scholar
[
Jenderedjian A., Bellows A.C. (2021). Rural poverty, violence, and power: Rejecting and endorsing gender mainstreaming by food security NGOs in Armenia and Georgia. World Dev., 140: 105270.
]Search in Google Scholar
[
Jian W., Duangjinda M., Vajrabukka C., Katawatin S. (2014). Differences of skin morphology in Bos indicus, Bos taurus, and their crossbreds. Int. J. Biometeorol., 58: 1087–1094.
]Search in Google Scholar
[
Jones P.G., Thornton P.K., (2009). Croppers to livestock keepers: livelihood transitions to 2050 in Africa due to climate change. Environ. Sci. Policy, 12: 427–437.
]Search in Google Scholar
[
Kabylbekova D., Assanbayev T.S., Kassymbekova S., Kantanen J. (2024). Genetic studies and breed diversity of Kazakh native horses: A comprehensive review. Adv. Life Sci., 11: 18–27.
]Search in Google Scholar
[
Kaliber M., Koluman N.A.Z.A.N., Silanikove N. (2016). Physiological and behavioral basis for the successful adaptation of goats to severe water restriction under hot environmental conditions. Animal, 10: 82–88.
]Search in Google Scholar
[
Kantanen J., Løvendahl P., Strandberg E., Eythorsdottir E., Li M.-H., Kettunen-Præbel A., Berg P., Meuwissen T. (2015). Utilization of farm animal genetic resources in a changing agro-ecological environment in the Nordic countries. Front. Genet., 6: 1–9.
]Search in Google Scholar
[
Kasprzyk A., Walenia A. (2023). Native pig breeds as a source of bio-diversity –breeding and economic aspects. Agriculture, 13: 1528.
]Search in Google Scholar
[
Kawęcka A., Pasternak M. (2022). The effect of slaughter age on meat quality of male kids of the Polish Carpathian native goat breed. Animals, 12: 702.
]Search in Google Scholar
[
Kawęcka A., Pasternak M., Słoniewska D., Miksza-Cybulska A., Bagnicka E. (2020). Quality of mountain sheep milk used for the production of traditional cheeses. Ann. Anim. Sci., 20: 299–314.
]Search in Google Scholar
[
Khanna S.K. (2020). Food availability, food security, and maternal mental health. Ecol. Food Nutr., 59: 1–2.
]Search in Google Scholar
[
Kidane L., Kejela A. (2021). Food security and environment conservation through sustainable use of wild and semi-wild edible plants: a case study in Berek Natural Forest, Oromia special zone, Ethiopia. Agric Food Secur., 10: 29.
]Search in Google Scholar
[
Knežević N., Grbavac S., Palfi M. (2019). Country of origin –the importance for consumers. Eur. Food Feed Law Rev., 14: 528–532.
]Search in Google Scholar
[
Kopuzlu S., Esenbuga N., Onenc A., Macit M., Yanar M., Yuksel S., Ozluturk A., Unlu N. (2018). Effects of slaughter age and muscle type on meat quality characteristics of Eastern Anatolian Red bulls. Arch. Anim. Breed., 61: 497–504.
]Search in Google Scholar
[
Król J., Litwińczuk Z., Brodziak A., Sawicka-Zugaj W. (2010). Bioactive protein content in milk from local breeds of cows included in the genetic resources conservation programme. Ann. Anim. Sci., 10: 213–221.
]Search in Google Scholar
[
Król J., Brodziak A., Litwińczuk Z., Litwińczuk A. (2013). Effect of age and stage of lactation on whey protein content in milk of cows of different breeds. Pol. J. Vet. Sci., 16: 395–397.
]Search in Google Scholar
[
Kurmangaliyev S.G., Mizambekova S.K., Akylbaev R.S., Turysbecova G.K. (2013). About the status of meat industry in Kazakhstan and in the world. Middle East J. Sci. Res., 17: 434–439.
]Search in Google Scholar
[
Kyvsgaard N.C., Luna L.A., Nansen P., Dolberg F., Peterson P.H. (2000). Analysis of traditional grain and scavenge based poultry system in Nicaragua. Proc. Workshop on Poultry as a Tool in Poverty Eradication and Promotion of Gender Equality, Tune, Denmark, pp. 103–109.
]Search in Google Scholar
[
Langlois B.B. (2011). The history, ethnology and social importance of mare’s milk consumption in Central Asia. J. Life Sci., 5: 863–887.
]Search in Google Scholar
[
Leroy G., Baumung R., Boettcher P., Besbes B. From T., Hoffmann I. (2018). Animal genetic resources diversity and ecosystem services. Glob. Food Secur., 17: 84–91.
]Search in Google Scholar
[
Li J., Yang C., Peng H., Yin H., Wang Y., Hu Y., Yu C., Jiang X., Du H., Li O., Liu Y. (2020). Effects of slaughter age on muscle characteristics and meat quality traits of Da-Heng meat-type birds. Animals, 10: 69.
]Search in Google Scholar
[
Liang B.J., Paengkoum P. (2019). Current status, challenges and the way forward for dairy goat production in Asia –conference summary of dairy goats in Asia. Asian-Australas J. Anim. Sci., 32: 1233–1243.
]Search in Google Scholar
[
Liang X., Duan Q., Li B., Wang Y., Bu Y., Zhang Y., Kuang Z., Mao L., An X., Wang H., Yang X., Wan N., Feng Z., Shen W., Miao W., Chen J., Liu S., Storz J.F., Liu J., Nevo E., Li K. (2024). Genomic structural variation contributes to evolved changes in gene expression in high-altitude Tibetan sheep. Proc. Natl. Acad. Sci., 121: e2322291121.
]Search in Google Scholar
[
Litwińczuk Z., Barłowska J., Chabuz W., Brodziak A. (2012). The nutritional value and technological suitability of milk from cows of 3 Polish breeds included in the programme of genetic resources conservation. Ann. Anim. Sci., 12: 423–432.
]Search in Google Scholar
[
Litwińczuk Z., Domaradzki P., Florek M., Żółkiewski P. (2016). Chemical composition, fatty acid profile, including health indices of intramuscular fat, and technological suitability of the meat of young bulls of three breeds included in a genetic resources conservation programme fattened within a low-input system. Anim. Sci. Pap. Rep., 34: 387–397.
]Search in Google Scholar
[
Liu X., Zhang Y., Li Y., Jianfei P., Wang D., Chen W., Zheng Z., He X., Zhao Q., Pu J., Weijun G., Han J., Orlando L., Ma Y., Jiang L. (2019). EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses. Mol. Biol. Evol., 36: 2591–2603.
]Search in Google Scholar
[
Lordelo M., Cid J., Cordovil C.M.D.S., Alves S.P., Bessa R.J.B., Carolino I. (2020). A comparison between the quality of eggs from indigenous chicken breeds and that from commercial layers. Poult. Sci., 99: 1768–1776.
]Search in Google Scholar
[
Lorido L., Ventanas S., Akcan T., Estévez M. (2016). Effect of protein oxidation on the impaired quality of dry-cured loins produced from frozen pork meat. Food Chem., 196: 1310–1314.
]Search in Google Scholar
[
Luković Z., Škorput D., Karolyi D., Kaić A. (2023). Prospects for sustainable production of the Banija Spotted pig in relation to fattening, carcass, and meat quality traits: A preliminary study. Sustainability, 15: 3288.
]Search in Google Scholar
[
Ma Q.Q., Jiao W.J., Wang Z.Y., Wu C.X., Shan A.S., Wang Y.B., Cai J.M. (2014). Tissue specificity and species superiority of cathelicidin gene expression in Chinese indigenous Min pigs. Livest. Sci., 161: 36–40.
]Search in Google Scholar
[
Mapiye C., Mwale M., Mupangwa J.F., Chimonyo M., Foti R., Mutenje M.J. (2008). A research review of village chicken production constraints and opportunities in Zimbabwe. Asian-Australas. J. Anim. Sci., 21: 1680–1688.
]Search in Google Scholar
[
Mapiye O., Chikwanha O.C., Makombe G., Dzama K., Mapiye C. (2020). Livelihood, food and nutrition security in Southern Africa: What role do indigenous cattle genetic resources play? Diversity, 12: 74.
]Search in Google Scholar
[
Mariante A.D.S., Egito A.D. (2002). Animal genetic resources in Brazil: result of five centuries of natural selection. Theriogenology, 57: 223–235.
]Search in Google Scholar
[
Mbuthia J.M., Rewe T.O., Kahi A.K. (2015). Analysis of pig breeding management and trait preferences in smallholder production systems in Kenya. Anim. Genet. Res., 56: 111–117.
]Search in Google Scholar
[
McManus C., Paluda G.R., Louvandini H., Gugel R., Sasaki L.C.B., Paiva S.R. (2009) Heat tolerance in Brazilian sheep: physiological and blood parameters. Trop. Anim. Health Prod., 41: 95–101.
]Search in Google Scholar
[
Michael P., de Cruz C.R., Mohd Nor N., Jamli S., Goh Y.M. (2022). The potential of using temperate–tropical crossbreds and agricultural by-products, associated with heat stress management for dairy production in the tropics: A review. Animals, 12: 1.
]Search in Google Scholar
[
Milković S., Lončarić R., Kralik I., Kristić J., Crnčan A., Kušec D., Canavari M. (2023). Consumers’ preference for the consumption of fresh Black Slavonian pig’s meat. Foods, 12: 1255.
]Search in Google Scholar
[
Miraglia N., Salimei E., Fantuz F. (2020). Equine milk production and valorization of marginal areas –A review. Animals, 10: 353.
]Search in Google Scholar
[
Monteiro A.C.G., Gomes E., Barreto A.S., Silva M.F., Fontes M.A., Bessa R.J.B., Lemos J.P.C. (2013). Eating quality of “Vitela Tradicional do Montado”-PGI veal and Mertolenga-PDO veal and beef. Meat Sci., 94: 63–68.
]Search in Google Scholar
[
Moreno-Indiasa I., Hernández-Castellano L.E., Morales-Delanuez A., Castro N., Capote J., Mendoza-Grimón V., Rivero M.A., Argüello A. (2011). Differences in meat quality of local cattle breed from outermost EU zone vs. commercial. J. App. Anim. Res., 39: 328–333.
]Search in Google Scholar
[
Motsepe R., Mabelebele M., Norris D., Brown D., Ngambi J., Ginindza M. (2016). Carcass and meat quality characteristics of South African indigenous chickens. Indian J. Anim. Res., 50: 580–587.
]Search in Google Scholar
[
Mottet A., de Haan C., Falcucci A., Tempio G., Opio C., Gerber P. (2017). Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Secur., 14: 1–8.
]Search in Google Scholar
[
Mottet A., Teillard F., Boettcher P., De’Besi G., Besbes B. (2018). Review: Domestic herbivores and food security: current contribution, trends and challenges for sustainable development. Animal, 12: 188–198.
]Search in Google Scholar
[
Moula N., Antoine-Moussiaux N., Decuypere E., Farnir F., Mertens K., De Baerdemaeker J., Leroy P. (2010). Comparative study of egg quality traits in two Belgian local breeds and two commercial lines of chickens. Arch. Geflugelkd., 74: 164–171.
]Search in Google Scholar
[
Mujibi F.D., Okoth E., Cheruiyot E.K., Onzere C., Bishop R.P., Fèvre E.M., Thomas L., Masembe C., Plastow G., Rothschild M. (2018). Genetic diversity, breed composition and admixture of Kenyan domestic pigs. PLoS ONE, 13: e0190080.
]Search in Google Scholar
[
Mujyambere V., Adomako K., Olympio S.O., Ntawubizi M., Nyinawamwiza L., Mahoro J., Conroy A. (2022). Local chickens in East African region: their production and potential. Poult. Sci., 101: 101547.
]Search in Google Scholar
[
Myćka G., Musiał A.D., Stefaniuk-Szmukier M., Piórkowska K., Ropka-Molik K. (2020). Variability of ACOX1 gene polymorphisms across different horse breeds with regard to selection pressure. Animals, 2225.
]Search in Google Scholar
[
Nabuuma D., Ekesa B., Faber M., Mbhenyane X. (2021). Community perspectives on food security and dietary diversity among rural smallholder farmers: A qualitative study in central Uganda. J. Agric. Food Res., 5: 100183.
]Search in Google Scholar
[
Naskar S., Gowane G.R., Chopra A., Paswan C., Prince L.L.L. (2012). Genetic adaptability of livestock to environmental stresses. In: Environmental stress and amelioration in livestock production, Sejian V., Naqvi S., Ezeji T., Lakritz J., Lal R. (eds). Springer, Berlin, Heidelberg, pp. 317–378.
]Search in Google Scholar
[
Ngambi J.W., Alabi O.J., Norris D. (2013). Role of goats in food security, poverty alleviation and prosperity with special reference to Sub-Saharan Africa: A review. J. Anim. Res., 47: 1–9.
]Search in Google Scholar
[
Nuraini H., Aditia E.L., Brahmantiyo B. (2018). Meat quality of Indonesian local cattle and buffalo. In: Bovine science –a key to sustainable development, Sadashiv S.O., Patil S.J. (eds). IntechOpen Publishers, London, United Kingdom, pp. 65–78.
]Search in Google Scholar
[
Padhi M.K. (2016). Importance of indigenous breeds of chicken for rural economy and their improvements for higher production performance. Scientifica, 2604685.
]Search in Google Scholar
[
Paiva S.R., McManus C.M., Blackburn H. (2016). Conservation of animal genetic resources –A new tact. Livest. Sci., 193: 32–38.
]Search in Google Scholar
[
Pakravan-Charvadeh M.R., Savari M., Khan H.A., Gholamrezai S., Flora C. (2021). Determinants of household vulnerability to food insecurity during COVID-19 lockdown in a mid-term period in Iran. Public Health Nutr., 24: 1619–1628.
]Search in Google Scholar
[
Peng W., Berry E.M. (2019). The concept of food security. In: Encyclopedia of Food Security and Sustainability, Ferranti P., Berry E.M., Anderson J.R. (eds). Elsevier, pp. 1–7.
]Search in Google Scholar
[
Perfecto I., Vandermeera J. (2010). The agroecological matrix as an alternative to the land-sparing/agriculture intensification model. Proc. Natl. Acad. Sci., 107: 5786–5791.
]Search in Google Scholar
[
Pieszka M., Łuszczyński J., Szeptalin A. (2011). Comparison of mare’s milk composition of different breeds. Nauka Przyr. Techn., 5: 1–5.
]Search in Google Scholar
[
Pietrzak-Fiećko R., Tomczyński R., Smoczyński S.S. (2013). Effect of lactation period on the fatty acid composition in mares’ milk from different breeds. Arch. Anim. Tierz., 56: 335–343.
]Search in Google Scholar
[
Pilling D., Hoffmann I. (2011). Climate change and animal genetic resources for food and agriculture: state of knowledge, risks and opportunities. FAO CGRFA Background Study Paper, Rome, Italy.
]Search in Google Scholar
[
Pius L., Huang S., Wanjala G., Bagi Z., Kusza S. (2024). African local pig genetic resources in the context of climate change adaptation. Animals, 14: 2407.
]Search in Google Scholar
[
Rachman M.P., Bamidele O., Dessie T., Smith J., Hanotte O., Gheyas A.A. (2024). Genomic analysis of Nigerian indigenous chickens reveals their genetic diversity and adaptation to heat-stress. Sci. Rep., 14: 2209.
]Search in Google Scholar
[
Radzik-Rant A., Rozbicka-Wieczorek A., Czauderna M., Rant W., Kuczyńska B. (2011). The chemical composition and fatty acid profile in the milk of Polish Mountain Sheep and Polish Merino. Anim. Sci., 49: 63–172.
]Search in Google Scholar
[
Razmaitė V., Šveistienė R., Šiukščius A. (2024). Effects of genotype on pig carcass, meat quality and consumer sensory evaluation of loins and bellies. Foods, 13: 798.
]Search in Google Scholar
[
Rizzi C., Cendron F., Penasa M., Cassandro M. (2023). Egg quality of Italian local chicken breeds: I. Yield performance and physical characteristics. Animals, 13: 148.
]Search in Google Scholar
[
Rossetti C., Perucatti A., Mottola F., Incarnato D., Genualdo V. (2021). Genetic investigation for the characterization of three indigenous pig breeds in southern Italy: advantages and prospects. Anim. Sci. Pap. Rep., 39: 141–150.
]Search in Google Scholar
[
Sachs J.D., Ballie J.E.M., Sutherland W.J., Aimsworth P.R., Ash N., Beddington J., Blackburn T.M., Collen B., Gardiner B., Gastron K.J., Godfray H.C.J., Green R.E., Harvey P.H., House B., Knapp S., Kümpel N.F., Macdonald D.W., Mace G.M., Mallett J., Matthews A., May R.M., Petchey O., Purvis A., Roe D., Safi K., Turner K., Walpole M., Watson R., Jones K.E., Watson R. (2009). Biodiversity conservation and the millennium development goals. Science, 325: 1502–1503.
]Search in Google Scholar
[
Salimei E., Fantuz F. (2012). Equid milk for human consumption. Int. Dairy J., 24: 130–142.
]Search in Google Scholar
[
Sayila A. (1998). Village chicken more popular in Zambia. World Poult., 14: 47–48.
]Search in Google Scholar
[
Scanes C.G. (2018). Animal products and human nutrition. In: Animals and Human Society, Scanes C.G., Toukhsati S.R. (eds). Academic Press, Wisconsin, USA, pp. 41–64.
]Search in Google Scholar
[
Sejian V., Bagath M., Krishnan G., Rashamol V.P., Pragna P., Devaraj C., Bhatta R. (2019). Genes for resilience to heat stress in small ruminants: A review. Small Rumin. Res., 173: 42–53.
]Search in Google Scholar
[
Seo S.N., Mendelsohn R. (2008). Measuring impacts and adaptation to climate change: a structural Ricardian model of African livestock management. Agric. Econ., 38: 151–165.
]Search in Google Scholar
[
Shen J., Hanif Q., Cao Y., Yu Y., Lei C., Zhang G., Zhao Y. (2020). Whole genome scan and selection signatures for climate adaption in Yanbian cattle. Front. Genet., 11: 94.
]Search in Google Scholar
[
Sokołowicz Z., Krawczyk J., Świątkiewicz S. (2016). Quality of poultry meat from native chicken breeds –a review. Ann. Anim. Sci., 6: 347–368.
]Search in Google Scholar
[
Sokołowicz Z., Dykiel M., Krawczyk J., Augustyńska-Prejsnar A. (2019). Effect of layer genotype on physical characteristics and nutritive value of organic eggs. CyTA –J. Food, 17: 11–19.
]Search in Google Scholar
[
Solomon T., Hussen E. (2018). Benefits of farm animal genetic adaptation: A review. Eur. Exp. Biol., 8: 22.
]Search in Google Scholar
[
Stanciu S. (2015). Horse meat consumption –between scandal and reality. Proc. Econ. Financ., 23: 697–703.
]Search in Google Scholar
[
Steinfeld H., Wassenaar T., Jutzi S. (2006). Livestock production systems in developing countries: status, drivers, trends. Rev. Sci. Tech., 25: 505–516.
]Search in Google Scholar
[
Stocco G., Cipolat-Gotet C., Gasparotto V., Cecchinato A., Bittante G. (2018). Breed of cow and herd productivity affect milk nutrient recovery in curd, and cheese yield, efficiency and daily production. Animal, 12: 434–444.
]Search in Google Scholar
[
Szulc K., Skrzypczak E., Buczyński J.T., Stanisławski D., Jankowska-Mąkosa A., Knecht D. (2012). Evaluation of fattening and slaughter values and also the meat quality determination in Zlotnicka Spotted pigs and their crosses with duroc breed. Czech J. Anim. Sci., 57: 95–107.
]Search in Google Scholar
[
Szulc K., Nowaczewski S., Skrzypczak E., Szyndler-Nędza M., Babicz M. (2024). Quality and processability of meat in Polish native pigs –a review. Ann. Anim. Sci., 24: 1107–1122.
]Search in Google Scholar
[
Szyndler-Nędza M., Świątkiewicz M., Migdał Ł., Migdał W. (2021). The quality and health-promoting value of meat from pigs of the native breed as the effect of extensive feeding with acorns. Animals, 11: 789.
]Search in Google Scholar
[
Teter A., Barłowska J., Florek M., Kędzierska-Matysek M., Król J., Brodziak A., Litwińczuk Z. (2019). Coagulation capacity of milk of local Polish and Holstein-Friesian cattle breeds. Anim. Sci. Pap. Rep., 37: 259–268.
]Search in Google Scholar
[
Therkildsen M., Jensen S. K., Kongsted A.G. (2021). Crossbreed and feed allowance affect final meat and eating quality of pigs from a free-range system. Livest. Sci., 250: 104584.
]Search in Google Scholar
[
Thieme O., Sonaiya F., Rota A., Guèye F., Dolberg F., Alders R. (2014). Defining family poultry production systems and their contribution to livelihoods. In: Decision tools for family poultry development. FAO Animal Production and Health Guidelines, No. 16. Rome, Italy, pp. 3–8.
]Search in Google Scholar
[
Tscharntke T., Clough Y., Wanger T.C., Jackson L., Motzke I., Perfecto I., Vandermeer J., Whitbread A. (2012). Global food security, bio-diversity conservation and the future of agricultural intensification. Biol. Conserv., 151: 53–59.
]Search in Google Scholar
[
Ujmajuridze L., Mitichashvili R., Potskhveria S., Kiliptari T. (2019). Genetic and farming features of the Kakhetian pig gene pool and epizootic characteristics of helminthiases of this breed. Ann. Agrar. Sci., 17: 108–112.
]Search in Google Scholar
[
Vordermeier M., Ameni G., Berg S., Bishop R., Robertson B. D., Aseffa A., Hewinson R.G., Young, D. B. (2012). The influence of cattle breed on susceptibility to bovine tuberculosis in Ethiopia. Comp. Immunol. Microbiol. Infect. Dis., 35: 227–232.
]Search in Google Scholar
[
Wang M., Liu Y., Bi X., Ma H., Zeng G., Guo J., Guo M., Ling Y., Zhao C. (2022). Genome-wide detection of copy number variants in Chinese indigenous horse breeds and verification of CNV-overlapped genes related to heat adaptation of the Jinjiang horse. Genes, 13: 603.
]Search in Google Scholar
[
Weerasingha V., Priyashantha H., Ranadheera C.S., Prasanna P., Silva P., Vidanarachchi J.K., Johansson M. (2020). Milk coagulation properties: A study on milk protein profile of native and improved cattle breeds/types in Sri Lanka. Dairy, 3: 710–721.
]Search in Google Scholar
[
Węglarz A., Andres K., Wojtysiak D. (2020). Slaughter value and meat quality in two strains of Polish crested cockerels. Ital. J. Anim. Sci., 19: 813–821.
]Search in Google Scholar
[
Wodajo H.D., Gemeda B.A., Kinati W., Mulem A.A., van Eerdewijk A., Wieland B. (2020). Contribution of small ruminants to food security for Ethiopian smallholder farmers. Small Rumin. Res., 184: 106064.
]Search in Google Scholar
[
Wolanciuk A., Barłowska J., Litwińczuk Z., Florek M. (2016). Suitability of the milk of native breeds of cows from low-input farms for cheese production, including rennet curd texture. Int. J. Dairy Technol., 69: 585–591.
]Search in Google Scholar
[
Wollny C.B.A., Chagunda M.G.G., Dossa G.L.H., Gondwe T.N.P. (2003). The conservation of animal genetic resources to facilitate food security and poverty alleviation. In: Food quality: a challenge for north and south, IAAS, Belgium, pp. 39–50.
]Search in Google Scholar
[
Wong J.T., de Bruyn J., Bagnol B., Grieve H., Li M., Pym R., Alders R.G. (2017). Small-scale poultry and food security in resource-poor settings: A review. Glob. Food Secur., 15: 43–52. Worldometers (2024). https://www.worldometers.info/world-population/ (access: 21.08.2024).
]Search in Google Scholar
[
Xayalath S., Balogh E., Rátky J. (2020). The role of animal bree- ding with special regard to native pigs of food supply and rural development in Laos. Acta Agraria Debreceniensis, 1: 149–154.
]Search in Google Scholar
[
Xie H., Wen Y., Choi Y., Zhang X. (2021). Global trends on food security research: A bibliometric analysis. Land, 10: 119.
]Search in Google Scholar
[
Yaro M., Munyard K.A., Stear M.J., Groth D.M. (2016). Combatting African animal trypanosomiasis (AAT) in livestock: the potential role of trypanotolerance. Vet. Parasitol., 225: 43–52.
]Search in Google Scholar