[Bailey T., Sheets J., McClary D., Smith S., Bridges A. (2016). Heat abatement. Elanco Dairy Business Unit. https://assets.ctfassets.net.]Search in Google Scholar
[Baumgard L.H., Rhoads R.P. (2012). Ruminant Nutrition Symposium: ruminant production and metabolic responses to heat stress. J. Anim. Sci., 90: 1855–1865.]Search in Google Scholar
[Baumgard L.H., Wheelock J.B., Sanders S.R., Moore C.E., Green H.B., Waldron M.R., Rhoads R.P. (2011). Postabsorptive carbohydrate adaptations to heat stress and monensin supplementation in lactating Holstein cows. J. Dairy Sci., 94: 5620–5633.]Search in Google Scholar
[Baumgard L.H., Collier R.J., Bauman D.E. (2017). A 100-year review: Regulation of nutrient partitioning to support lactation. J. Dairy Sci., 100: 10353–10366.]Search in Google Scholar
[Bernabucci U., Lacetera N., Baumgard L.H., Rhoads R.P., Ronchi B., Nardone A. (2010). Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal, 4: 1167–1183.]Search in Google Scholar
[Bernabucci U., Basiricò L., Morera P., Dipasquale D., Vitali A., Piccioli Cappelli F., Calamari L. (2015). Effect of summer season on milk protein fractions in Holstein cows. J. Dairy Sci., 98: 1815–1827.]Search in Google Scholar
[Bionaz M., Trevisi E., Calamari L.U.I., Librandi F., Ferrari A., Ber-toni G. (2007). Plasma paraoxonase, health, inflammatory conditions, and liver function in transition dairy cows. J. Dairy Sci., 90: 1740–1750.]Search in Google Scholar
[Bohmanova J., Misztal I., Cole J.B. (2007). Temperature-humidity indices as indicators of milk production losses due to heat stress. J. Dairy Sci., 90: 1947–1956.]Search in Google Scholar
[Bradford B.J., Yuan K., Farney J.K., Mamedova L.K., Carpenter A.J. (2015). Invited review: Inflammation during the transition to lactation: New adventures with an old flame. J. Dairy Sci., 98: 6631–6650.]Search in Google Scholar
[Braga Paiano R., Becker Birgel D., Harry Birgel Junior E. (2019). Uterine involution and reproductive performance in dairy cows with metabolic diseases. Animals (Basel), 9: 93.]Search in Google Scholar
[Brügemann K., Gernand E., König von Borstel U., König S. (2012). Defining and evaluating heat stress thresholds in different dairy cow production systems. Arch. Anim. Breed., 55: 13–24.]Search in Google Scholar
[Butler W.R. (2005). Inhibition of ovulation in the postpartum cow and the lactating sow. Livest. Prod. Sci., 98: 5–12.]Search in Google Scholar
[Carabaño M.J., Logar B., Bormann J., Minet J., Vanrobays M.L., Díaz C., Tychon B., Gengler N., Hammami H. (2016). Modeling heat stress under different environmental conditions. J. Dairy Sci., 99: 3798–3814.]Search in Google Scholar
[Carpenter A.J., Ylioja C.M., Vargas C.F., Mamedova L.K., Mendonça L.G., Coetzee J.F., Hollis L.C., Gehring R., Bradford B.J. (2016). Hot topic: Early postpartum treatment of commercial dairy cows with nonsteroidal antiinflammatory drugs increases whole-lactation milk yield. J. Dairy Sci., 99: 672–679.]Search in Google Scholar
[Cartwright S.L., Schmied J., Karrow N., Mallard B.A. (2023). Impact of heat stress on dairy cattle and selection strategies for thermotolerance: a review. Front. Vet. Sci., 10: 1198697.]Search in Google Scholar
[Carvalho M.R., Penagaricano F., Santos J.E.P., DeVries T.J., McBride B.W., Ribeiro E.S. (2019). Long-term effects of postpartum clinical disease on milk production, reproduction, and culling of dairy cows J. Dairy Sci., 102: 11701–11717.]Search in Google Scholar
[Chastant S., Saint-Dizier M. (2019). Inflammation: friend or foe of bovine reproduction? Anim. Reprod., 16: 539–547.]Search in Google Scholar
[Chen L., Thorup V.M., Kudahl A.B., Ostergaard S. (2024). Effects of heat stress on feed intake, milk yield, milk composition, and feed efficiency in dairy cows: A meta-analysis. J Dairy Sci., 107: 3207–3218.]Search in Google Scholar
[Chen S., Wang J., Peng D., Li G., Chen J., Gu X. (2018). Exposure to heat-stress environment affects the physiology, circulation levels of cytokines, and microbiome in dairy cows. Sci. Rep., 8: 14606.]Search in Google Scholar
[Cheong S.H., Sa Filho O.G., Absalon-Medina V.A., Pelton S.H., Butler W.R., Gilbert R.O. (2016). Metabolic and endocrine differences between dairy cows that do or do not ovulate first postpartum dominant follicles. Biol. Reprod., 94: 18.]Search in Google Scholar
[Cowley F.C., Barber D.G., Houlihan A.V., Poppi D.P. (2015). Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism. J. Dairy Sci., 98: 2356–2368.]Search in Google Scholar
[Das R., Sailo L., Verma N., Bharti P., Saikia J., Imtiwati, Kumar R. (2016). Impact of heat stress on health and performance of dairy animals: A review. Vet. World., 9: 260–268.]Search in Google Scholar
[De Rensis F., Lopez-Gatius F., García-Ispierto I., Morini G., Scar-amuzzi R.J. (2017). Causes of declining fertility in dairy cows during the warm season. Theriogenology, 91: 145–153.]Search in Google Scholar
[De Rensis F., Saleri R., García-Ispierto I., Scaramuzzi R., López-Gatius F. (2021). Effects of heat stress on follicular physiology in dairy cows. Animals, 11: 3406.]Search in Google Scholar
[de Vries M.J., Veerkamp R.F. (2000). Energy balance of dairy cattle in relation to milk production variables and fertility. J. Dairy Sci., 83: 62−69.]Search in Google Scholar
[Dikmen S., Hansen P.J. (2009). Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? J. Dairy Sci., 92: 109–116.]Search in Google Scholar
[Dovolou E., Giannoulis T., Nanas I., Amiridis G.S. (2023). Heat stress: A serious disruptor of the reproductive physiology of dairy cows. Animals, 13: 1846.]Search in Google Scholar
[Drackley J.K. (1999). Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci., 82: 2259–2273.]Search in Google Scholar
[Dubub J., Duffield T.F., Leslie K.E., Walton J.S., LeBlanc S.J. (2012). Risk factors and effects of postpartum anovulation in dairy cows. J. Dairy Sci., 95: 1845–1854.]Search in Google Scholar
[Edmonson A.J., Lean I.J., Weave L.D., Farvel T., Webster G. (1989). A body condition scoring chart for Holstein dairy cows. J. Dairy Sci., 72: 68–78.]Search in Google Scholar
[Esposito G., Irons P.C., Webb E.C., Chapwanya A. (2014). Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim. Reprod. Sci., 144: 60–71.]Search in Google Scholar
[Ferguson J. (2020). Reproductive management in dairy herds. Clin. Theriogenol., 12: 309–322.]Search in Google Scholar
[Frühbeck G., Catalán V., Rodríguez A., Ramírez B., Becerril S., Salvador J., Portincasa P., Colina I., Gómez-Ambrosi J. (2017). Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in the metabolic syndrome. Sci. Rep., 7: 6619.]Search in Google Scholar
[Gao S.T., Guo J., Quan S.Y., Nan X.M., Fernandez M.V.S., Baumgard L.H., Bu D.P. (2017). The effects of heat stress on protein metabolism in lactating Holstein cows. J. Dairy Sci., 100: 5040–5049.]Search in Google Scholar
[Gao S.T., Ma L., Zhou Z., Zhou Z.K., Baumgard L.H., Jiang D., Bionaz M., Bu D.P. (2019). Heat stress negatively affects the transcriptome related to overall metabolism and milk protein synthesis in mammary tissue of midlactating dairy cows. Physiol. Genom., 51: 400–409.]Search in Google Scholar
[García-Ispierto I., López-Gatius F., Bech-Sabat G., Santolaria P., Yániz J.L., Nogareda C., De Rensis F., López-Béjar M. (2007). Climate factors affecting conception rate of high producing dairy cows in northeastern Spain. Theriogenology, 67: 1379–1385.]Search in Google Scholar
[Garverick H.A., Harris M., Vogel-Bluel R., Sampson J., Bader J., Lamberson W., Spain J., Lucy M., Youngquist R. (2013). Concentrations of nonesterified fatty acids and glucose in blood of periparturient dairy cows are indicative of pregnancy success at first insemination. J. Dairy Sci., 96: 181–188.]Search in Google Scholar
[Gernand E., König S., Kipp C. (2019). Influence of on-farm measurements for heat stress indicators on dairy cow productivity, female fertility, and health J. Dairy Sci., 102: 6660–6671.]Search in Google Scholar
[Gilbert R.O. (2019). Symposium review: Mechanisms of disruption of fertility by infectious diseases of the reproductive tract. J. Dairy Sci., 102: 3754–3765.]Search in Google Scholar
[Gorniak T., Meyer U., Südekum K.H., Dänicke S. (2014). Impact of mild heat stress on dry matter intake, milk yield and milk composition in mid-lactation Holstein dairy cows in a temperate climate. Arch. Anim. Nutr., 68: 358–369.]Search in Google Scholar
[Gross J.J. (2023). Dairy cow physiology and production limits. Anim. Front., 13: 44–50.]Search in Google Scholar
[Guo Z., Gao S., Ouyang J., Ma L., Bu D. (2021). Impacts of heat stress-induced oxidative stress on the milk protein biosynthesis of dairy cows. Animals (Basel), 11: 726.]Search in Google Scholar
[Hammami H., Bormann J., M’hamdi N., Montaldo H.H., Gengler N. (2013). Evaluation of heat stress effects on production traits and somatic cell score of Holsteins in a temperate environment. J. Dairy Sci., 96: 1844–1855.]Search in Google Scholar
[Hammami H., Vandenplas J., Vanrobays M.L., Rekik B., Bastin C., Gengler N. (2015). Genetic analysis of heat stress effects on yield traits, udder health, and fatty acids of Walloon Holstein cows. J. Dairy Sci., 98: 4956–4968.]Search in Google Scholar
[Hassan F.U., Nawaz A., Rehman M.S., Ali M.A., Dilshad S.M.R., Yang C. (2019). Prospects of HSP70 as a genetic marker for thermo-tolerance and immuno-modulation in animals under climate change scenario. Anim. Nutr., 5: 340–350.]Search in Google Scholar
[Heck J.M., van Valenberg H.J., Dijkstra J., van Hooijdonk A.C. (2009). Seasonal variation in the Dutch bovine raw milk composition. J. Dairy Sci., 92: 4745–4755.]Search in Google Scholar
[Hostens M., Fievez V., Leroy J.L., Van Ranst J., Vlaeminck B., Opsomer G. (2012). The fatty acid profile of subcutaneous and abdominal fat in dairy cows with left displacement of the abomasum. J. Dairy Sci., 95: 3756–3765.]Search in Google Scholar
[Hut P.R., Scheurwater,J., Nielen M., van den Broek J., Hostens M.M. (2022). Heat stress in a temperate climate leads to adapted sensor-based behavioral patterns of dairy cows. J. Dairy Sci., 105: 6909–6922.]Search in Google Scholar
[Kim S.H., Ramos S.C., Valencia R.A., Cho Y.I., Lee S.S. (2022). Heat stress: Effects on rumen microbes and host physiology, and strategies to alleviate the negative impacts on lactating dairy cows. Front. Microbiol., 13: 804562.]Search in Google Scholar
[Koch F., Lamp O., Eslamizad M., Weitzel J., Kuhla B. (2016). Metabolic response to heat stress in late-pregnant and early lactation dairy cows: implications to liver-muscle crosstalk. PloS One, 11: e0160912.]Search in Google Scholar
[Komisarek J., Stefanska B., Nowak W. (2022) The effect of ruminal fluid pH on milk fatty acids composition in cattle. Ann. Anim. Sci., 22: 625–631.]Search in Google Scholar
[Lambertz C., Sanker C., Gauly M. (2014). Climatic effects on milk production traits and somatic cell score in lactating Holstein-Frie-sian cows in different housing systems. J. Dairy Sci., 97: 319–329.]Search in Google Scholar
[Lamp O., Derno M., Otten W., Mielenz M., Nürnberg G., Kuhla B. (2015). Metabolic heat stress adaption in transition cows: differences in macronutrient oxidation between late-gestating and early-lactating German Holstein dairy cows. PLoS One, 10: e0125264.]Search in Google Scholar
[Lemal P., May K., König S., Schroyen M., Gengler N. (2023). Invited review: From heat stress to disease – Immune response and candidate genes involved in cattle thermotolerance. J. Dairy Sci., 106: 4471–4488.]Search in Google Scholar
[Leroy J.L.M.R., Vanholder T., Mateusen B., Christophe A., Opsomer G., de Kruif A., Genicot G., Van Soom A. (2005). Nonesterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction, 130: 485–495.]Search in Google Scholar
[Liu Z., Ezernieks V., Wang J., Arachchillage N.W., Garner J.B., Wales W.J., Cocks B.G., Rochfort S. (2017). Heat stress in dairy cattle alters lipid composition of milk. Sci. Rep., 7: 961.]Search in Google Scholar
[Lucy M.C. (2000). Regulation of ovarian follicular growth by somatotropin and insulin-like growth factors in cattle. J. Dairy Sci., 83: 1635–1647.]Search in Google Scholar
[McArt J.A., Nydam D.V., Oetzel G.R., Overton T.R., Ospina P.A. (2013). Elevated non-esterified fatty acids and β-hydroxybutyrate and their association with transition dairy cow performance. Vet. J., 198: 560–570.]Search in Google Scholar
[Mendonca L.C., Carvalho W.A., Campos M.M., Souza G.N., de Oliveira S.A., Meringhe G.K.F., Negrao J.A. (2024). Heat stress affects milk yield, milk quality, and gene expression profiles in mammary cells of Girolando cows. J. Dairy Sci., https://doi.org/10.3168/jds.2024-25498.]Search in Google Scholar
[Menta P.R., Machado V.S., Piñeiro J.M., Thatcher W.W., Santos J.E.P., Vieira-Neto A. (2022). Heat stress during the transition period is associated with impaired production, reproduction, and survival in dairy cows. J. Dairy Sci., 105: 4474–4489.]Search in Google Scholar
[Min L., Zhao S., Tian H., Zhou X., Zhang Y., Li S., Yang H., Zheng N., Wang J. (2017). Metabolic responses and “omics” technologies for elucidating the effects of heat stress in dairy cows. Int. J. Biometeorol., 61: 1149–1158.]Search in Google Scholar
[Morton J.M., Tranter W.P., Mayer D.G., Jonsson N.N. (2007). Effects of environmental heat on conception rates in lactating dairy cows: critical periods of exposure. J. Dairy Sci., 90: 2271–2278.]Search in Google Scholar
[Nardone A., Lacetera N., Bernabucci U., Ronchi. B. (1997). Composition of colostrum from dairy heifers exposed to high air temperatures during late pregnancy and the early postpartum period. J. Dairy Sci., 80: 838–844.]Search in Google Scholar
[National Research Council (1971). A Guide to Environmental Research on Animals. Natl. Acad. Sci., Washington, DC, USA.]Search in Google Scholar
[National Research Council (2001). Nutrient Requirements of Dairy Cattle. 7th revised edition. Natl. Acad. Sci., Washington, DC, USA.]Search in Google Scholar
[Negrón-Pérez V.M., Fausnacht D.W., Rhoads M.L. (2019). Invited review: Management strategies capable of improving the reproductive performance of heat-stressed dairy cattle. J. Dairy Sci., 102: 10695–10710.]Search in Google Scholar
[Quellet V., Cabrera V.E., Fadul-Pacheco L., Charbonneau É. (2019). The relationship between the number of consecutive days with heat stress and milk production of Holstein dairy cows raised in a humid continental climate. J. Dairy Sci., 102: 8537–8545.]Search in Google Scholar
[Pinto S., Hoffmann G., Ammon C., Amon T. (2022). Critical THI thresholds based on the physiological parameters of lactating dairy cows. J. Therm. Biol., 88: 102523.]Search in Google Scholar
[Rhoads M.L., Rhoads R.P., VanBaale M.J., Collier R.J., Sanders S.R., Weber W.J., Crooker B.A., Baumgard L.H. (2009). Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J. Dairy Sci., 92: 1986–1997.]Search in Google Scholar
[Ruiz-Gonzalez A., Suissi W., Baumgard L.H., Martel-Kennes Y., Chouinard P.Y., Gervais R., Rico D.E. (2023). Increased dietary vitamin D3 and calcium partially alleviate heat stress symptoms and inflammation in lactating Holstein cows independent of dietary concentrations of vitamin E and selenium. J. Dairy Sci., 106: 3984–4001.]Search in Google Scholar
[Safa S., Kargar S., Moghaddam G.A., Ciliberti M.G., Caroprese M. (2019). Heat stress abatement during the postpartum period: effects on whole lactation milk yield, indicators of metabolic status, inflammatory cytokines, and biomarkers of the oxidative stress. J. Anim. Sci., 97: 122–132.]Search in Google Scholar
[Sammad A., Umer S., Shi R., Zhu H., Zhao X., Wang Y. (2020). Dairy cow reproduction under the influence of heat stress. J. Anim. Physiol. Anim. Nutr. (Berl.), 104: 978–986.]Search in Google Scholar
[Schüller L.K., Burfeind O., Heuwieser W. (2014). Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature-humidity index thresholds, periods relative to breeding, and heat load indices. Theriogenology, 81: 1050–1057.]Search in Google Scholar
[Shahzad K., Akbar H., Vailati-Riboni M., Basiricò,L., Morera P., Rodriguez-Zas S.L., Nardone A., Bernabucci U., Loor J.J. (2015). The effect of calving in the summer on the hepatic transcriptome of Holstein cows during the peripartal period. J. Dairy Sci., 98: 5401–5413.]Search in Google Scholar
[Shingfield K.J., Bonnet M., Scollan N.D. (2013). Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal, 7: 132–162.]Search in Google Scholar
[Smith D.L., Smith T., Rude B.J., Ward S.H. (2013). Short communication: comparison of the effects of heat stress on milk and component yields and somatic cell score in Holstein and Jersey cows. J. Dairy Sci., 96: 3028–3033.]Search in Google Scholar
[Sordillo L.M., Mavangira V. (2014). The nexus between nutrient metabolism, oxidative stress, and inflammation in transition cows. Anim. Prod. Sci., 54: 1204–1214.]Search in Google Scholar
[Stefanska B., Nowak W., Pruszynska-Oszmalek E., Mikuła R., Stanisławski D., Kasprowicz-Potocka M., Frankiewicz A., Maćkowiak P. (2016 a). The effect of body condition score on the biochemical blood indices and reproductive performance of dairy cows. Ann. Anim. Sci., 16: 129–143.]Search in Google Scholar
[Stefanska B., Pozniak A., Nowak W. (2016 b). Relationship between the pre- and postpartum body condition scores and periparturient indices and fertility in high-yielding dairy cows. J. Vet. Res., 60: 81–90.]Search in Google Scholar
[Stefanska B., Sobolewska P., Fievez V., Pruszynska-Oszmałek E,. Purwin C., Nowak W. (2024 a). The impact of heat stress on performance, fertility, and adipokines involved in regulating systemic immune response during lipolysis of early lactating dairy cows. J. Dairy Sci., 107: 2111–2128.]Search in Google Scholar
[Stefanska B., Pruszynska-Oszmalek E., Fievez V., Purwin C., Nowak W. (2024 b). Impact of heat stress during close-up dry period on performance, fertility and immunometabolic blood indices of dairy cows: prospective cohort study. Sci. Rep., 14: 21211.]Search in Google Scholar
[Tao S., Orellana R.M., Weng X., Marins T.N., Dahl G.E., Bernard J.K. (2018). Symposium review: The influences of heat stress on bovine mammary gland function. J. Dairy Sci., 101: 5642–5654.]Search in Google Scholar
[Tao S., Orellana Rivas R.M., Marins T.N., Chen Y.C., Gao J., Bernard J.K. (2020). Impact of heat stress on lactational performance of dairy cows. Theriogenology, 150: 437–444.]Search in Google Scholar
[Vinet A., Mattalia S., Vallée R., Bertrand C., Cuyabano B.C.D., Boichard D. (2023). Estimation of genotype by temperature-humidity index interactions on milk production and udder health traits in Montbeliarde cows. Genet. Sel. Evol., 55: 4.]Search in Google Scholar
[Wang D., Chen Z., Zhuang X., Luo J., Chen T., Xi Q., Zhang Y., Sun J. (2020). Identification of circRNA-associated-ceRNA networks involved in milk fat metabolism under heat stress. Int. J. Mol. Sci., 21: 4162.]Search in Google Scholar
[Wheelock J.B., Rhoads R.P., Vanbaale M.J., Sanders S.R., Baumgard L.H. (2010). Effects of heat stress on energetic metabolism in lactating Holstein cows. J. Dairy Sci., 93: 644–655.]Search in Google Scholar
[Yang W., Wang S., Zhao Y., Jiang Q., Loor J.J., Tian Y., Fan W., Li M., Zhang B., Cao J., Xu C. (2023). Regulation of cholesterol metabolism during high fatty acid-induced lipid deposition in calf hepatocytes. J. Dairy Sci., 106: 5835–5852.]Search in Google Scholar
[Zimbelman R.B., Rhoads R.P., Rhoads M.L., Duff G.C., Baumgard L.H., Collier R.J. (2009). A re-evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high-producing dairy cows. Proc. 24th Southwest Nutrition Conference, 26–27.02.2009, Tempe, USA, pp. 158–169.]Search in Google Scholar
[Zulu V.C., Nakao T., Sawamukai Y. (2002). Insulin-like growth factor-I as a possible hormonal mediator of nutritional regulation of reproduction in cattle. J. Vet. Med. Sci., 64: 657–665.]Search in Google Scholar