[Akonor P., Ofori H., Dziedzoave N., Kortei N. (2016). Drying characteristics and physical and nutritional properties of Penaeus monodon meat as affected by different traditional drying techniques. Int. J. Food Sci., 2016.]Search in Google Scholar
[AOAC (2006). Official Methods of Analysis, 18th ed. Association of Official Analytical Chemists, Arlington, VA, USA.]Search in Google Scholar
[Apines-Amar M., Satoh S., Kiron V., Watanabe T. (2004). Effects of supplemental amino acid-chelated trace elements on the immune response of Oncorhynchus mykiss subjected to bacterial challenge. J. Aquat. Anim. Health, 16: 53–57.]Search in Google Scholar
[Banadaky M.D., Rajaei-Sharifabadi H., Hafizi M., Hashemi S.A., Kalanaky S., Fakharzadeh S., Shahbedini S.P., Rezayazdi K., Nazaran M.H. (2021). Lactation responses of Holstein dairy cows to supplementation with a combination of trace minerals produced using the advanced chelate compounds technology. Trop. Anim. Health Prod., 53: 1–9.]Search in Google Scholar
[Bharadwaj A.S., Patnaik S., Browdy C.L., Lawrence A.L. (2014). Comparative evaluation of an inorganic and a commercial chelated copper source in Litopenaeus vannamei (Boone) fed diets containing phytic acid. Aquaculture, 422: 63–68.]Search in Google Scholar
[Bolann B., Ulvik R. (1991). Improvement of a direct spectrophoto-metric assay for routine determination of superoxide dismutase activity. Clin. Chem., 37: 1993–1999.]Search in Google Scholar
[Borlongan I.G. (1990). Studies on the digestive lipases of Chanos chanos. Aquaculture, 89: 315–325.]Search in Google Scholar
[Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.]Search in Google Scholar
[Burtis C.A., Bruns D.E. (2014). Tietz Fundamentals of clinical chemistry and molecular diagnostics-e-book. Elsevier Health Sciences.]Search in Google Scholar
[Byrne L., Hynes M.J. Connolly C.D., Murphy R.A. (2021). Influence of the chelation process on the stability of organic trace mineral supplements used in animal nutrition. Animals, 11: 1730.]Search in Google Scholar
[Cheng K.M., Hu C.Q., Liu Y.N., Zheng S.X., Qi X.J. (2006). Effects of dietary calcium, phosphorus and calcium/phosphorus ratio on the growth and tissue mineralization of Litopenaeus vannamei reared in low-salinity water. Aquaculture, 251: 472–483.]Search in Google Scholar
[Davis D.A., Lawrence A.L., Gatlin III D.M. (1993). Evaluation of the dietary zinc requirement of Penaeus vannamei and effects of phytic acid on zinc and phosphorus bioavailability. J. World Aquacult. Soc., 24: 40–47.]Search in Google Scholar
[Dong X., Wang J., Raghavan V. (2020). Effects of high-intensity ultrasound processing on the physicochemical and allergenic properties of shrimp. Innov. Food Sci. Emerg. Technol., 65: 102441.]Search in Google Scholar
[Elagizi A., Lavie C.J., O’Keefe E., Marshall K., O’Keefe J.H., Milani R.V. (2021). An update on omega-3 polyunsaturated fatty acids and cardiovascular health. Nutrients, 13: 204.]Search in Google Scholar
[El-Sayed A.F.M., Figueiredo-Silva C., Zeid S.M.S., Makled S.O. (2023). Metal-amino acid complexes (Zn, Se, Cu, Fe and Mn) as a replacement of inorganic trace minerals in commercial diets for Oreochromis niloticus reared under field conditions: Effects on growth, feed efficiency, gut microbiota, intestinal histology, and economic return. Aquaculture, 567: 739223.]Search in Google Scholar
[Ellis A.I. (1990). Lysozyme assays. Tech. Fish Immunol., 1: 101–103. FAO (2020). Food and Agriculture Organization of the United Nations]Search in Google Scholar
[(FAO). The State of World Fisheries and Aquaculture. Rome, Italy. Food & Agriculture Org.]Search in Google Scholar
[Garland Jr T., Downs C.J., Ives A.R. (2022). Trade-offs (and constraints) in organismal biology. Physiol. Biochem. Zool., 95: 82–112.]Search in Google Scholar
[Ghasemi H.A., Hajkhodadadi I., Hafizi M., Taherpour K., Nazaran M.H. (2020). Effect of advanced chelate technology based trace minerals on growth performance, mineral digestibility, tibia characteristics, and antioxidant status in broiler chickens. Nutr. Metab., 17: 1–12.]Search in Google Scholar
[Ghasemi H.A., Hajkhodadadi I., Hafizi M., Fakharzadeh S., Abbasi M., Kalanaky S., Nazaran M.H. (2022). Effect of advanced che-late compounds-based mineral supplement in laying hen diet on the performance, egg quality, yolk mineral content, fatty acid composition, and oxidative status. Food Chem., 366: 130636.]Search in Google Scholar
[Gheisari A.A., Sanei A., Samie A., Gheisari M.M., Toghyani M. (2011). Effect of diets supplemented with different levels of manganese, zinc, and copper from their organic or inorganic sources on egg production and quality characteristics in laying hens. Biol. Trace Element. Res., 142: 557–571.]Search in Google Scholar
[Gobi N., Ramya C., Vaseeharan B., Malaikozhundan B., Vijayakumar S., Murugan K., Benelli G. (2016). Oreochromis mossambicus diet supplementation with Psidium guajava leaf extracts enhance growth, immune, antioxidant response and resistance to Aeromonas hydrophila. Fish Shellfish Immunol., 58: 572–583.]Search in Google Scholar
[Hill G., Miller E., Whetter P., Ullrey D. (1983). Concentration of minerals in tissues of pigs from dams fed different levels of dietary zinc. J. Anim. Sci., 57: 130–138.]Search in Google Scholar
[Hoseini-Alfatemi S.M., Fallah F., Armin S., Hafizi M., Karimi A., Kalanaky S. (2020). Evaluation of blood and liver cytotoxicity and apoptosis-necrosis induced by nanochelating based silver nanoparticles in mouse model. Iran. J. Pharm. Res., 19: 207–218.]Search in Google Scholar
[Huang F., Wang L., Zhang C.X., Song K. (2017). Replacement of fish-meal with soybean meal and mineral supplements in diets of Litopenaeus vannamei reared in low-salinity water. Aquaculture, 473: 172–180.]Search in Google Scholar
[Katya K., Lee S., Yun H., Dagoberto S., Browdy C.L., Vazquez-Anon M., Bai S.C. (2016). Efficacy of inorganic and chelated trace minerals (Cu, Zn and Mn) premix sources in Pacific white shrimp, Litopenaeus vannamei (Boone) fed plant protein based diets. Aquaculture, 459: 117–123.]Search in Google Scholar
[Khanjani M.H., Sharifinia M. (2021). Production of Nile tilapia (Oreochromis niloticus) reared in a limited water exchange system: The effect of different light levels. Aquaculture, 542: 736912.]Search in Google Scholar
[Khanjani M.H., Alizadeh M., Sharifinia M. (2021). Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquacult. Int., 29: 307–321.]Search in Google Scholar
[Khanjani M.H., Mozanzadeh M.T., Sharifinia M., Emerenciano M.G.C. (2022). Biofloc: A sustainable dietary supplement, nutritional value and functional properties. Aquaculture, 738757.]Search in Google Scholar
[Leadprathom N., Teangtarn P., Kanorn K., Sumith J.A., Sonthi M. (2012). Determining the effect of sediment resuspension from the activity of phenoloxidase in penaeid shrimp post larvae. Am. J. Environ. Sci., 8: 304–310.]Search in Google Scholar
[Li X., Lin H., Zhu Z., Watson Ray G., Zhou S., Yang Q., Tan B. (2022). Effects of cobalt sources and levels on growth performance, serum biochemistry, metabolic activities, and cobalt contents in the tissue of juvenile Litopenaeus vannamei. North Am. J. Aquacult., 84: 336–344.]Search in Google Scholar
[Licona-Jain A., Campa-Córdova Á., Luna-González A., Racotta I.S., Tello M., Angulo C. (2020). Dietary supplementation of marine yeast Yarrowia lipolytica modulates immune response in Litopenaeus vannamei. Fish Shellfish Immunol., 105: 469–476.]Search in Google Scholar
[Lin S., Lin X., Yang Y., Li F., Luo L. (2013). Comparison of chelated zinc and zinc sulfate as zinc sources for growth and immune response of shrimp (Litopenaeus vannamei). Aquaculture, 406–407: 79–84.]Search in Google Scholar
[Lin Y.H., Shih C.C., Kent M., Shiau S.Y. (2010). Dietary copper requirement reevaluation for juvenile Epinephelus malabaricus, with an organic copper source. Aquaculture, 310: 173–177.]Search in Google Scholar
[Liu C., Ralston N.V. (2021). Seafood and health: What you need to know? Adv. Food Nutr. Res., Elsevier, pp. 275–318.]Search in Google Scholar
[Liu H., Zhang X., Tan B., Lin Y., Chi S., Dong X., Yang Q. (2014). Effect of dietary potassium on growth, nitrogen metabolism, osmoregulation and immunity of pacific white shrimp (Litopenaeus vannamei) reared in low salinity seawater. J. Ocean Univ. China, 13: 311–320.]Search in Google Scholar
[Mohseni M., Pourkazemi M., Bai S. (2014). Effects of dietary inorganic copper on growth performance and immune responses of juvenile Huso huso. Aquacult. Nutr., 20: 547–556.]Search in Google Scholar
[Muralisankar T., Bhavan P.S., Radhakrishnan S., Seenivasan C., Srinivasan V., Santhanam P. (2015). Effects of dietary zinc on the growth, digestive enzyme activities, muscle biochemical compositions, and antioxidant status of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture, 448: 98–104.]Search in Google Scholar
[Muralisankar T., Bhavan P.S., Radhakrishnan S., Seenivasan C., Srinivasan V. (2016). The effect of copper nanoparticles supplementation on freshwater prawn Macrobrachium rosenbergii post larvae. J. Trace Elemen. Med. Biol., 34: 39–49.]Search in Google Scholar
[Nazaran M. (2012). Chelate compounds. Google Patents. Publication number: US20120100372 A1, Publication type: Application, Application number: US 12/910,799.]Search in Google Scholar
[Ng’oma E., Perinchery A.M., King E.G. (2017). How to get the most bang for your buck: the evolution and physiology of nutrition-dependent resource allocation strategies. Proc. R. Soc. B: Biol. Sci., 284: 20170445.]Search in Google Scholar
[Pan C., Chen S., Hao S., Yang X. (2019). Effect of low-temperature preservation on quality changes in Pacific white shrimp, Litopenaeus vannamei: a review. J. Sci. Food Agric., 99: 6121–6128.]Search in Google Scholar
[Panmei H., Jana P., Varghese T., Nathaniel P., Chadha N.K., Krishna G., Pailan G.H., Dasgupta S. (2023). Dietary magnesium che-late alleviates oxidative stress and improves growth in white-leg shrimp, Penaeus vannamei (Boone, 1931), reared in inland saline water. Anim. Feed Sci. Technol., 303: 115692.]Search in Google Scholar
[Perazzolo L.M., Barracco M.A. (1997). The prophenoloxidase activating system of the shrimp Penaeus paulensis and associated factors. Dev. Comp. Immunol., 21: 385–395.]Search in Google Scholar
[Perazzolo L.M., Gargioni R., Ogliari P., Barracco M.A. (2002). Evaluation of some hemato-immunological parameters in the shrimp Farfantepenaeus paulensis submitted to environmental and physiological stress. Aquaculture, 214: 19–33.]Search in Google Scholar
[Rashidian G., Zare M., Tabibi H., Stejskal V., Faggio C. (2023). The synergistic effects of four medicinal plant seeds and chelated minerals on the growth, immunity, and antioxidant capacity of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol., 139: 108930.]Search in Google Scholar
[Rick W., Stegbauer H.P. (1974). α-Amylase measurement of reducing groups. In: Methods of enzymatic analysis. Elsevier, pp. 885–890.]Search in Google Scholar
[Roy L., Davis D., Saoud I., Henry R. (2007). Supplementation of potassium, magnesium and sodium chloride in practical diets for the Pacific white shrimp, Litopenaeus vannamei, reared in low salinity waters. Aquacult, Nutr., 13: 104–113.]Search in Google Scholar
[Seyfori H., Ghasemi H.A., Hajkhodadadi I., Hafizi M. (2019). Effects of water supplementation of anorganic acid-trace mineral complex on production and slaughter parameters, intestinal histomorphology, and macronutrient digestibility in growing ostriches. Poult. Sci., 98: 4860–4867.]Search in Google Scholar
[Sharifinia M. (2024). Improve aquaculture with insect meal. Science, 383: 838–838.]Search in Google Scholar
[Sharifinia M., Bahmanbeigloo Z.A., Keshavarzifard M., Khanjani M.H., Daliri M., Koochaknejad E., Jasour M.S. (2023 a). The effects of replacing fishmeal by mealworm (Tenebrio molitor) on digestive enzymes activity and hepatopancreatic biochemical indices of Litopenaeus vannamei. Ann. Anim. Sci., 23: 519–528.]Search in Google Scholar
[Sharifinia M., Bahmanbeigloo Z.A., Keshavarzifard M., Khanjani M.H., Daliri M., Koochaknejad E., Jasour M.S. (2023 b). Fish-meal replacement by mealworm (Tenebrio molitor) in diet of farmed Pacific white shrimp (Litopenaeus vannamei): effects on growth performance, serum biochemistry, and immune response. Aquat. Living Resour., 36.]Search in Google Scholar
[Shi B., Lu J., Hu X., Betancor M.B., Zhao M., Tocher D.R., Zhou Q., Jiao L., Xu F., Jin M. (2021 a). Dietary copper improves growth and regulates energy generation by mediating lipolysis and autophagy in hepatopancreas of Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 537: 736505.]Search in Google Scholar
[Shi B., Xu F., Zhou Q., Regan M.K., Betancor M.B., Tocher D.R., Sun M., Meng F., Jiao L., Jin M. (2021 b). Dietary organic zinc promotes growth, immune response and antioxidant capacity by modulating zinc signaling in juvenile Pacific white shrimp (Litopenaeus vannamei). Aquacult. Rep., 19: 100638.]Search in Google Scholar
[Smith K.L., Guentzel J.L. (2010). Mercury concentrations and omega-3 fatty acids in fish and shrimp: preferential consumption for maximum health benefits. Mar. Pollut. Bull., 60: 1615–1618.]Search in Google Scholar
[Suttle N.F. (2022). Mineral Nutrition of Livestock. (5th ed.), CAB International, Oxfordshire, UK.]Search in Google Scholar
[Tan B., Mai K. (2001). Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino. Aquaculture, 192: 67–84.]Search in Google Scholar
[Truong H.H., Hines B.M., Emerenciano M.G., Blyth D., Berry S., Noble T.H., Bourne N.A., Wade N., Rombenso A.N., Simon C.J. (2022). Mineral nutrition in penaeid shrimp. Rev. Aquac., 15: 1355–1373.]Search in Google Scholar
[van der Most P.J., de Jong B., Parmentier H.K., Verhulst S. (2011). Trade-off between growth and immune function: a meta-analysis of selection experiments. Funct. Ecol., 25: 74–80.]Search in Google Scholar
[Wang N., Wang X., Lin Z., Chen X., Bu X., Liu S., Lei Y., Shi Q., Qin J., Chen L. (2022). Effects of dietary Zn on growth, antioxidant capacity, immunity and tolerance to lipopolysaccharide challenge in juvenile Chinese mitten crab Eriocheir sinensis. Aquacult. Res., 53: 1110–1120.]Search in Google Scholar
[Xian J.A., Li B., Guo H., Miao Y.T., Ye J.M., Feng L.N., Ye C.X., Pan X.B., Wang A.L., Hao X.M. (2014). Haemocyte apoptosis of the tiger shrimp Penaeus monodon exposed to cadmium. Bull. Env. Contam. Toxicol., 92: 525–528.]Search in Google Scholar
[Xu W.J., Pan L.Q. (2012). Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture, 356: 147–152.]Search in Google Scholar
[Yang J., Zhang Z., Lin G., Li M., Zhang Y., Mai K. (2023). Organic copper promoted copper accumulation and transport, enhanced low temperature tolerance and physiological health of white shrimp (Litopenaeus vannamei Boone, 1931). Fish Shellfish Immunol., 132: 108459.]Search in Google Scholar
[Yao W., Yang P., Zhang X., Xu X., Zhang C., Li X., Leng X. (2022). Effects of replacing dietary fish meal with Clostridium autoethanogenum protein on growth and flesh quality of Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 549: 737770.]Search in Google Scholar
[Yeganeh V., Sharifinia M., Mobaraki S., Dashtiannasab A., Aeinjamshid K., Borazjani J.M., Maghsoudloo T. (2020). Survey of survival rate and histological alterations of gills and hepatopancreas of the Litopenaeus vannamei juveniles caused by exposure of Margalefidinium/Cochlodinium polykrikoides isolated from the Persian Gulf. Harmful Algae, 97: 101856.]Search in Google Scholar
[Yuan Y., Jin M., Luo J., Xiong J., Ward T.L., Ji F., Xu G., Sun M., Zhou Q. (2019 a). Effects of different dietary copper sources on the growth and intestinal microbial communities of Pacific white shrimp (Litopenaeus vannamei). Aquac. Nutr., 25: 828–840.]Search in Google Scholar
[Yuan Y., Jin M., Xiong J., Zhou Q. (2019 b). Effects of dietary dosage forms of copper supplementation on growth, antioxidant capacity, innate immunity enzyme activities and gene expressions for juvenile Litopenaeus vannamei. Fish Shellfish Immun., 84: 1059–1067.]Search in Google Scholar
[Yuan Y., Luo J., Zhu T., Jin M., Jiao L., Sun P., Ward T.L., Ji F., Xu G., Zhou Q. (2020). Alteration of growth performance, meat quality, antioxidant and immune capacity of juvenile Litopenaeus vannamei in response to different dietary dosage forms of zinc: Comparative advantages of zinc amino acid complex. Aquaculture, 522: 735120.]Search in Google Scholar
[Zerjal T., Härtle S., Gourichon D., Guillory V., Bruneau N., Laloë D., Pinard-van der Laan M.H., Trapp S., Bed’hom B., Quéré P. (2021). Assessment of trade-offs between feed efficiency, growth-related traits, and immune activity in experimental lines of layer chickens. Genet. Sel. Evol., 53: 44.]Search in Google Scholar
[Zhou Q.C., Wu Z.H., Tan B.P., Chi S.Y., Yang Q.H. (2006). Optimal dietary methionine requirement for juvenile cobia (Rachycentron canadum). Aquaculture, 258: 551–557.]Search in Google Scholar