Otwarty dostęp

Differential effects of Bacillus species – fermented products on antibiotic resistome and virulence factor gene composition in the cecal digesta of broilers


Zacytuj

Aljumaah M.R., Suliman G.M., Abdullatif A.A., Abudabos A.M. (2020). Effects of phytobiotic feed additives on growth traits, blood biochemistry, and meat characteristics of broiler chickens exposed to Salmonella typhimurium. Poultry Sci., 99: 5744–5751. Search in Google Scholar

Cassenego A.P., de Oliveira N.E., Laport M.S., Abranches J., Lemos J.A., GiambiagideMarval M. (2016). The CtsR regulator controls the expression of clpC, clpE and clpP and is required for the virulence of Enterococcus faecalis in an invertebrate model. Antonie Van Leeuwenhoek, 109: 1253–1259. Search in Google Scholar

Chen J.Y., Yu Y.H. (2021). Bacillus subtilis – fermented products ameliorate the growth performance and alter cecal microbiota community in broilers under lipopolysaccharide challenge. Poultry Sci., 100: 875–886. Search in Google Scholar

Chen J. Y., Yu Y.H. (2022 a). Bacillus subtilis – fermented products ameliorate the growth performance, alleviate intestinal inflammatory gene expression, and modulate cecal microbiota community in broilers during the starter phase under dextran sulfate sodium challenge. J. Poult. Sci., 59: 261–272. Search in Google Scholar

Chen Y.C., Yu Y.H. (2022 b). Bacillus licheniformis – fermented products and enramycin differentially modulate microbiota and antibiotic resistome in the cecal digesta of broilers. Poultry Sci., 101: 102010. Search in Google Scholar

Chen Y.C., Yu Y.H. (2020). Bacillus licheniformis – fermented products improve growth performance and the fecal microbiota community in broilers. Poultry Sci., 99: 1432–1443. Search in Google Scholar

Cheng Y.H., Horng Y.B., Chen W.J., Hua K.F., Dybus A., Yu Y.H. (2021). Effect of fermented products produced by Bacillus licheniformis on the growth performance and cecal microbial community of broilers under coccidial challenge. Animals, 11: 1245. Search in Google Scholar

Chen Y.W., Yu Y.H. (2023). Differential effects of Bacillus subtilis – and Bacillus licheniformis – fermented products on growth performance, intestinal morphology, intestinal antioxidant and barrier function gene expression, cecal microbiota community, and microbial carbohydrate-active enzyme composition in broilers. Poultry Sci., 102: 102670. Search in Google Scholar

Choules M.P., Wolf N.M., Lee H., Anderson J.R., Grzelak E.M., Wang Y., Ma R., Gao W., McAlpine J.B., Jin Y.Y., Cheng J., Lee H., Suh J.W., Duc N.M., Paik S., Choe J.H., Jo E.K., Chang C.L., Lee J.S., Jaki B.U., Pauli G.F., Franzblau S.G., Cho S. (2019). Rufomycin targets ClpC1 proteolysis in Mycobacterium tuberculosis and M. abscessus. Antimicrob. Agents Chemother., 63: e02204–18. Search in Google Scholar

De Cesare A., Oliveri C., Lucchi A., Savini F., Manfreda G., Sala C. (2022). Pilot study on poultry meat from antibiotic free and conventional farms: can metagenomics detect any difference? Foods, 11: 249. Search in Google Scholar

Dhariwal A., Chong J., Habib S., King I.L., Agellon L.B., Xia J. (2017). MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res., 45: W180–W188. Search in Google Scholar

Elshaghabee F.M.F., Rokana N., Gulhane R.D., Sharma C., Panwar H. (2017). Bacillus as potential probiotics: status, concerns, and future perspectives. Front. Microbiol., 8: 1490. Search in Google Scholar

Gavrish E., Sit C.S., Cao S., Kandror O., Spoering A., Peoples A., Ling L., Fetterman A., Hughes D., Bissell A., Torrey H., Akopian T., Mueller A., Epstein S., Goldberg A., Clardy J., Lewis K. (2014). Lassomycin, a ribosomally synthesized cyclic peptide, kills mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem. Biol., 21: 509–518. Search in Google Scholar

Hafeez A., Shah S.A.A., Khan R.U., Ullah Q., Naz S. (2020). Effect of diet supplemented with phytogenics and protease enzyme on performance, serum biochemistry and muscle histomorphology in broilers. J. Appl. Anim. Res., 48: 326–330. Search in Google Scholar

Huang P., Zhang Y., Xiao K., Jiang F., Wang H., Tang D., Liu D., Liu B., Liu Y., He X., Liu H., Liu X., Qing Z., Liu C., Huang J., Ren Y., Yun L., Yin L., Lin Q., Zeng C., Su X., Yuan J., Lin L., Hu N., Cao H., Huang S., Guo Y., Fan W., Zeng J. (2018). The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome, 6: 211. Search in Google Scholar

Hussein E.O.S., Ahmed S.H., Abudabos A.M., Aljumaah M.R., Alkhlulaifi M.M., Nassan M.A., Suliman G.M., Naiel M.A.E., Swelum A.A. (2020). Effect of antibiotic, phytobiotic and probiotic supplementation on growth, blood indices and intestine health in broiler chicks challenged with Clostridium perfringens. Animals, 10: 507. Search in Google Scholar

Koorakula R., Schiavinato M., Ghanbari M., Wegl G., Grabner N., Koestelbauer A., Klose V., Dohm J.C., Domig KJ. (2022). Metatranscriptomic analysis of the chicken gut resistome response to in-feed antibiotics and natural feed additives. Front. Microbiol., 13: 833790. Search in Google Scholar

Krüger E., Witt E., Ohlmeier S., Hanschke R., Hecker M. (2000). The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. J. Bacteriol., 182: 3259–3265. Search in Google Scholar

Lee A., Aldeieg M., Woodward M.J., Juniper D.T., Rymer C. (2021). The effect of Candida famata and Lactobacillus plantarum on the number of coliforms and the antibiotic resistance and virulence of Escherichia coli in the gut of broilers. Animal, 15: 100310. Search in Google Scholar

Noman S.M., Shafiq M., Bibi S., Mittal B., Yuan Y., Zeng M., Li X., Olawale O.A., Jiao X., Irshad M. (2022). Exploring antibiotic resistance genes, mobile gene elements, and virulence gene factors in an urban freshwater samples using metagenomic analysis. Environ. Sci. Pollut. Res., 30: 2977–2990. Search in Google Scholar

Pan Q., Garsin D.A., Losick R. (2001). Self-reinforcing activation of a cell-specific transcription factor by proteolysis of an anti-sigma factor in B. subtilis. Mol. Cell, 8: 873–883. Search in Google Scholar

Pedroso A.A., Hurley-Bacon A.L., Zedek A.S., Kwan T.W., Jordan A.P., Avellaneda G., Hofacre C.L., Oakley B.B., Collett S.R., Maurer J.J., Lee M.D. (2013). Can probiotics improve the environmental microbiome and resistome of commercial poultry production? Int. J. Environ. Res. Public Health., 10: 4534–4559. Search in Google Scholar

Qiu K., Li C.L., Wang J., Qi G.H., Gao J., Zhang H.J., Wu S.G. (2021). Effects of dietary supplementation with Bacillus subtilis, as an alternative to antibiotics, on growth performance, serum immunity, and intestinal health in broiler chickens. Front. Nutr., 8: 786878. Search in Google Scholar

Ramlucken U., Lalloo R., Roets Y., Moonsamy G., Jansen van Rensburg C., Thantsha M.S. (2020). Advantages of Bacillus-based probiotics in poultry production. Livest. Sci., 241: 104215. Search in Google Scholar

Shah M., Zaneb H., Masood S., Khan R.U., Mobashar M., Khan I., Din S., Khan M.S., Rehman H.U., Tinelli A. (2020). Single or combined applications of zinc and multi-strain probiotic on intestinal histomorphology of broilers under cyclic heat stress. Probiotics Antimicrob. Proteins, 12: 473–480. Search in Google Scholar

Sreejith S., Shajahan S., Prathiush P.R., Anjana V.M., Viswanathan A., Chandran V., Ajith Kumar G.S., Jayachandran R., Mathew J., Radhakrishnan E.K. (2020). Healthy broilers disseminate antibiotic resistance in response to tetracycline input in feed concentrates. Microb. Pathog., 149: 104562. Search in Google Scholar

Stoica R.M., Moscovici M., Tomulescu C., Cășărică A., Băbeanu N., Popa O., Kahraman H.A. (2019). Antimicrobial compounds of the genus Bacillus: A review. Rom. Biotechnol. Lett., 24: 1111–1119. Search in Google Scholar

Su J.Q., Wei B., Ou-Yang W.Y., Huang F.Y., Zhao Y., Xu H.J., Zhu Y.G. (2015). Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environ. Sci. Technol., 49: 7356–7363. Search in Google Scholar

Sumi C.D., Yang B.W., Yeo I.C., Hahm Y.T. (2015). Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can. J. Microbiol., 61: 93–103. Search in Google Scholar

Szmolka A., Anjum M.F., La Ragione R.M., Kaszanyitzky E.J., Nagy B. (2012). Microarray based comparative genotyping of gentamicin resistant Escherichia coli strains from food animals and humans. Vet. Microbiol., 156: 110–118. Search in Google Scholar

Tran C., Cock I.E., Chen X., Feng Y. (2022). Antimicrobial Bacillus: metabolites and their mode of action. Antibiotics, 11: 88. Search in Google Scholar

Turgay K., Hahn J., Burghoorn J., Dubnau D. (1998). Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J., 17: 6730–6738. Search in Google Scholar

Wawrzynow A., Banecki B., Zylicz M. (1996). The Clp ATPases define a novel class of molecular chaperones. Mol. Microbiol., 21: 895–899. Search in Google Scholar

Winglee K., Howard A.G., Sha W., Gharaibeh R.Z., Liu J., Jin D., Fodor A.A., Gordon-Larsen P. (2017). Recent urbanization in China is correlated with a Westernized microbiome encoding increased virulence and antibiotic resistance genes. Microbiome, 5: 121. Search in Google Scholar

Wu H.J., Wang A.H., Jennings M.P. (2008). Discovery of virulence factors of pathogenic bacteria. Curr. Opin. Chem. Biol., 12: 93–101. Search in Google Scholar

Xiong W., Wang Y., Sun Y., Ma L., Zeng Q., Jiang X., Li A., Zeng Z., Zhang T. (2018). Antibiotic-mediated changes in the fecal microbiome of broiler chickens define the incidence of antibiotic resistance genes. Microbiome, 6: 34. Search in Google Scholar

Yang L., Zeng X., Qiao S. (2021). Advances in research on solid-state fermented feed and its utilization: The pioneer of private customization for intestinal microorganisms. Anim. Nutr., 7: 905–916. Search in Google Scholar

Zalewska M., Błażejewska A., Czapko A., Popowska M. (2021). Antibiotics and antibiotic resistance genes in animal manure – consequences of its application in agriculture. Front. Microbiol., 12: 610656. Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine