Otwarty dostęp

Comprehensive analysis of runs of homozygosity and heterozygosity in Holstein cattle on the basis of medium and high density SNP panels and large population sample


Zacytuj

Barbato O., Menchetti L., Brecchia G., Barile V.L. (2022). Using pregnancy-associated glycoproteins (PAGs) to improve reproductive management: From dairy cows to other dairy livestock. Animals, 12: 2033. Search in Google Scholar

Biscarini F., Cozzi P., Gaspa G., Marras G. (2019). detectRUNS: Detect runs of homozygosity and runs of heterozygosity in diploid genomes. Retrieved from https://cran.rproject.org/web/packages/detectRUNS/index.html Search in Google Scholar

Biscarini F., Mastrangelo S., Catillo G., Senczuk G., Ciampolini R. (2020). Insights into genetic diversity, runs of homozygosity and heterozygosity-rich regions in Maremmana semi-feral cattle using pedigree and genomic data. Animals, 10: 2285. Search in Google Scholar

Blott S., Kim J.J., Moisio S., Schmidt-Kuntzel A., Cornet A., Berzi P., Cambisano N., Ford C., Grisart B., Johnson D., Karim L., Simon P., Snell R., Spelman R., Wong J., Vilkki J., Georges M., Farnir F., Coppieters W. (2003). Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics, 163: 253–266. Search in Google Scholar

Buaban S., Lengnudum K., Boonkum W., Phakdeedindan P. (2022). Genome-wide association study on milk production and somatic cell score for Thai dairy cattle using weighted single-step approach with random regression test-day model. J. Dairy Sci., 105: 468–494. Search in Google Scholar

Ceballos F.C., Joshi P.K., Clark D.W., Ramsay M., Wilson J.F. (2018). Runs of homozygosity: windows into population history and trait architecture. Nat. Rev. Genet., 19: 220–234. Search in Google Scholar

Curik I., Ferencakovic M., Sölkner J. (2014). Inbreeding and runs of homozygosity: A possible solution to an old problem. Livest. Sci., 166: 26–34. Search in Google Scholar

Dai W., Zou Y., White R.R., Liu J., Liu H. (2018). Transcriptomic profiles of the bovine mammary gland during lactation and the dry period. Funct. Integr. Genom., 18: 125–140. Search in Google Scholar

Dash S., Singh A., Dixit S.P., Kumar A. (2022). Identification of selection signatures for milk performance traits among indigenous dairy cattle breeds using high density genomic information. Ind. J. Anim. Res., 10.18805/IJAR.B-4908. Search in Google Scholar

Davila K.M.S., Howell A., Nunez A., Orelien A., Roe V., Rodriguez E., Dikmen S., Mateescu R.G. (2020). Genome-wide association study identifies variants associated with hair length in Brangus cattle. Anim Genet., 51: 811–814. Search in Google Scholar

de Camargo G.M., Costa R.B., de Albuquerque L.G., Regitano L.C., Baldi F., Tonhati H. (2015). Polymorphisms in TOX and NCOA2 genes and their associations with reproductive traits in cattle. Reprod. Fert. Develop., 27: 523–528. Search in Google Scholar

Djari A., Esquerré D., Weiss B., Martins F., Meersseman C., Boussaha M., Klopp C., Rocha D. (2013). Gene-based single nucleotide polymorphism discovery in bovine muscle using next-generation transcriptomic sequencing. BMC Genom., 14: 307. Search in Google Scholar

Eisen D.P., Osthoff M. (2014). If there is an evolutionary selection pressure for the high frequency of MBL2 polymorphisms, what is it? Clin. Exp. Immunol., 176: 165–171. Search in Google Scholar

El-Komy S.M., Saleh A.A., Abdel-Hamid T.M., El-Magd M.A. (2020) Association of GHR polymorphisms with milk production in buffaloes. Animals, 10: 1203. Search in Google Scholar

Falaleeva M., Surface J., Shen M., de la Grange P., Stamm S. (2015). SNORD116 and SNORD115 change expression of multiple genes and modify each other’s activity. Gene, 572: 266–273. Search in Google Scholar

Ferencakovic M., Hamzic E., Gredler B., Curik I., Sölkner J. (2011). Runs of homozygosity reveal genome-wide autozygosity in the Austrian Fleckvieh cattle. Agric. Conspec. Sci., 76: 325–328. Search in Google Scholar

Ferenčaković M., Sölkner J., Curik I. (2013). Estimating autozygosity from high-throughput information: Effects of SNP density and genotyping errors. Genet. Sel. Evol., 45: 42. Search in Google Scholar

Fijarczyk A., Babik W. (2015). Detecting balancing selection in genomes: Limits and prospects. Mol. Ecol., 24: 3529–3545. Search in Google Scholar

Fontanesi L., Scotti E., Dall’Olio S., Oulmouden A., Russo V. (2012). Identification and analysis of single nucleotide polymorphisms in the myosin VA (MYO5A) gene and its exclusion as the causative gene of the dilute coat colour locus in rabbit. World Rabbit Sci., 20: 35–41. Search in Google Scholar

Forutan M., Ansari Mahyari S., Baes C., Melzer N., Schenkel F.S., Sargolzaei M. (2018). Inbreeding and runs of homozygosity before and after genomic selection in North American Holstein cattle. BMC Genom., 19: 98. Search in Google Scholar

Gibson J., Morton N.E. Collins A. (2006). Extended tracts of homozygosity in outbred human populations. Hum. Mol. Genet., 15: 789–795. Search in Google Scholar

Graber M., Kohler S., Kaufmann T., Doherr M.G., Bruckmaier R.M., van Dorland H.A. (2010). A field study on characteristics and diversity of gene expression in the liver of dairy cows during the transition period. J. Dairy. Sci., 93: 5200–5215. Search in Google Scholar

Hadi Z., Atashi H., Dadpasand M., Derakhshandeh A., Ghahramani Seno M.M. (2015). The relationship between growth hormone polymorphism and growth hormone receptor genes with milk yield and reproductive performance in Holstein dairy cows. Iran J. Vet. Res., 16: 244–248. Search in Google Scholar

Howrigan D.P., Simonson M.A., Keller M.C. (2011). Detecting autozygosity through runs of homozygosity: A comparison of three autozygosity detection algorithms. BMC Genom., 12: 460. Search in Google Scholar

Jiang J., Ma L., Prakapenka D., Vanraden P.M., Cole J.B., Cole J.B. (2019). A large-scale genome-wide association study in US Holstein cattle. Front. Genet., 10: 412. Search in Google Scholar

Kadri N.K., Guldbrandtsen B., Lund M.S., Sahana G. (2015). Genetic dissection of milk yield traits and mastitis resistance QTL on chromosome 20 in dairy cattle. J. Dairy. Sci., 98: 9015–9025. Search in Google Scholar

Karim S., Saharti S., Alganmi N., Mirza Z., Alfares A., Turkistany S., Al-Attas M., Noureldin H., Al Sakkaf K., Abusamra H., Al-Qahtani M., Abuzenadah A. (2021). Two novel homozygous HPS6 mutations (double mutant) identified by whole-exome sequencing in a Saudi consanguineous family suspected for oculocutaneous albinism. Life (Basel), 12: 14. Search in Google Scholar

Keller M.C., Visscher P.M., Goddard M.E. (2011). Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data. Genetics, 189: 237–249. Search in Google Scholar

Kennedy K.M., Donkin S.S., Allen M.S. (2020). Effects of propionate concentration on short-term metabolism in liver explants from dairy cows in the postpartum period. J. Dairy. Sci., 103: 11449–11460. Search in Google Scholar

Kim E.S., Sonstegard T.S., Van Tassell C.P., Wiggans G., Rothschild M.F. (2015). The relationship between runs of homozygosity and inbreeding in Jersey cattle under selection. PLoS One, 10(7):e0129967. Search in Google Scholar

Kudo Y., Guardavaccaro D., Santamaria P.G., Koyama-Nasu R., Latres E., Bronson R., Yamasaki L., Pagano M. (2004). Role of Fbox protein βTrcp1 in mammary gland development and tumorigenesis. Mol. Cell. Biol., 24: 8184–8194. Search in Google Scholar

Li G., Tang J., Huang J., Jiang Y., Fan Y., Wang X., Ren J. (2022). Genome-wide estimates of runs of homozygosity, heterozygosity, and genetic load in two Chinese indigenous goat breeds. Front. Genet., 13: 774196. Search in Google Scholar

Li Y., Zhou H., Cheng L., Zhao J., Hickford J. (2020). Variation in the stearoyl-CoA desaturase gene (SCD) and its influence on milk fatty acid composition in late-lactation dairy cattle grazed on pasture. Arch. Anim. Breed., 63: 355–366. Search in Google Scholar

Ma L., Luo H., Brito L.F., Chang Y., Chen Z., Lou W., Zhang F., Wang L., Guo G., Wang Y. (2023). Estimation of genetic parameters and single-step genome-wide association studies for milk urea nitrogen in Holstein cattle. J. Dairy. Sci., 106: 352–363. Search in Google Scholar

Mackiewicz D., Oliveira P.M.C., Oliveira S.M., Cebrat S. (2013). Distribution of recombination hotspots in the human genome – a comparison of computer simulations with real data. PLoS ONE., 8:e65272. Search in Google Scholar

Makino T., Rubin C.J., Carneiro M., Axelsson E., Andersson L., Webster, M.T. (2018). Elevated proportions of deleterious genetic variation in domestic animals and plants. Genome Biol. Evol., 10: 276–290. Search in Google Scholar

Marete A., Lund M.S., Boichard D., Ramayo-Caldas Y. (2018) A system- based analysis of the genetic determinism of udder conformation and health phenotypes across three French dairy cattle breeds. PLoS ONE 13(7): e0199931. Search in Google Scholar

Marras G., Gaspa G., Sorbolini S., Dimauro C., Ajmone-Marsan P., Valentini A., Williams J.L., Macciotta N.P.P. (2015). Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Anim. Genet., 46: 110–121. Search in Google Scholar

Marras G., Wood B.J., Makanjuola B., Malchiodi F., Peeters K., van As P., Baes C.F., Biscarini F. (2018). Characterization of runs of homozygosity and heterozygosity-rich regions in a commercial turkey (Meleagris gallopavo) population. Proc. 11th World Congress of Genetics Applied to Livestock Production, Auckland, New Zealand. Search in Google Scholar

Mastrangelo S., Tolone M., Gerlando R.D., Fontanesi L., Sardina M.T., Portolano B. (2016). Genomic inbreeding estimation in small populations: Evaluation of runs of homozygosity in three local dairy cattle breeds. Animal, 10: 746–754. Search in Google Scholar

McQuillan R., Leutenegger A.L., Abdel-Rahman R., Franklin C.S., Pericic M., Barac-Lauc L., Smolej-Narancic N., Janicijevic B., Polasek O., Tenesa A., MacLeod A.K., Farrington S.M., Rudan P., Hayward C., Vitart V., Rudan I., Wild S.H., Dunlop M.G., Wright A.F., Campbell H., Wilson J.F. (2008). Runs of homozygosity in European populations. Am. J. Hum. Genet., 83: 359–372. Search in Google Scholar

Melo-Baez B., Wong Y.S., Aguilera C.J., Cabezas J., Mançanares A.C.F., Riadi G., Castro F.O., Rodriguez-Alvarez L. (2020). MicroRNAs from extracellular vesicles secreted by bovine embryos as early biomarkers of developmental competence. Int. J. Mol. Sci., 21: 8888. Search in Google Scholar

Mohammadi A., Alijani S., Rafat S.A., Abdollahi-Arpanashi R. (2020). Genome-wide association study and pathway analysis for female fertility traits in Iranian Holstein cattle. Ann. Anim. Sci., 20: 825–851. Search in Google Scholar

Mulim H.A., Brito L.F., Pinto L.F.B., Ferraz J.B.S., Grigoletto L., Silva M.R., Pedrosa V.B. (2022). Characterization of runs of homozygosity, heterozygosity-enriched regions, and population structure in cattle populations selected for different breeding goals. BMC Genom., 23: 209. Search in Google Scholar

Nayeri S., Stothard P. (2016). Tissues, metabolic pathways and genes of key importance in lactating dairy cattle. Springer Sci. Rev., 4: 49–77. Search in Google Scholar

Nothnagel M., Lu T.T., Kayser M., Krawczak M. (2010). Genomic and geographic distribution of SNP-defined runs of homozygosity in Europeans. Hum. Mol. Genet., 19: 2927–2935. Search in Google Scholar

Pedrosa V.B., Schenkel F.S., Chen S.Y., Oliveira H.R., Casey T.M., Melka M.G., Brito L.F. (2021). Genomewide association analyses of lactation persistency and milk production traits in Holstein cattle based on imputed whole-genome sequence data. Genes (Basel), 12: 1830. Search in Google Scholar

Pemberton T.J., Absher D., Feldmand M.W., Myers R.M., Rosenberg N.A., Li J.Z. (2012). Genomic patterns of homozygosity in worldwide human populations. Am. J. Hum. Genet., 10: 275–292. Search in Google Scholar

Peripolli E., Munari D.P., Silva M.V.G.B., Lima A.L.F., Irgang R., Baldi F. (2017). Runs of homozygosity: current knowledge and applications in livestock. Anim. Genet., 48: 255–271. Search in Google Scholar

Purfield D.C., Berry D.P., McParland S., Bradley D.G. (2012). Runs of homozygosity and population history in cattle. BMC Genet., 13: 70. Search in Google Scholar

Qi Y., Purtell L., Fu M., Lee N.J., Aepler J., Zhang L., Loh K., Enriquez R.F., Baldock P.A., Zolotukhin S., Campbell L.V., Herzog H. (2016). Snord116 is critical in the regulation of food intake and body weight. Sci. Rep., 6: 18614. Search in Google Scholar

Reese S.T., Geary T.W., Franco G.A., Moraes J.G.N., Spencer T.E., Pohler K.G. (2019). Pregnancy associated glycoproteins (PAGs) and pregnancy loss in high vs sub fertility heifers. Theriogenology, 135: 7–12. Search in Google Scholar

Santos W., Schettini G., Fonseca M.G., Pereira G.L., Chardulo L.A., Neto O., Baldassini W.A., de Oliveira H.N., Curi R.A. (2021). Fine-scale estimation of inbreeding rates, runs of homozygosity and genome-wide heterozygosity levels in the Mangalarga Marchador horse breed. J. Anim. Breed. Genet., 138: 161–173. Search in Google Scholar

Senczuk G., Guerra L., Mastrangelo S., Campobasso C., Zoubeyda K., Imane M., Marletta D., Kusza S., Karsli T., Gaouar S.B.S., Pilla F., Ciani E., The Bovita Consortium (2020). Fifteen shades of grey: combined analysis of genome-wide SNP data in steppe and Mediterranean grey cattle sheds new light on the molecular basis of coat color. Genes, 11: 932. Search in Google Scholar

Sonzogni M., Zhai P., Mientjes E.J., van Woerden G.M., Elgersma Y. (2020). Assessing the requirements of prenatal UBE3A expression for rescue of behavioral phenotypes in a mouse model for Angelman syndrome. Mol. Autism., 11: 70. Search in Google Scholar

Strucken E.M., Laurenson Y.C., Brockmann G.A. (2015). Go with the flow-biology and genetics of the lactation cycle. Front. Genet., 6: 118. Search in Google Scholar

Suzuki J. Jr., Therrien J., Filion F., Lefebvre R., Goff A.K., Smith L.C. (2009). In vitro culture and somatic cell nuclear transfer affect imprinting of SNRPN gene in pre- and post-implantation stages of development in cattle. BMC Dev. Biol., 9: 9. Search in Google Scholar

Szmatoła T., Gurgul A., Ropka-Molik K., Jasielczuk I., Zabek T., Bugno-Poniewierska M. (2016). Characteristics of runs of homozygosity in selected cattle breeds maintained in Poland. Livest. Sci., 188: 72–80. Search in Google Scholar

Szmatoła T., Gurgul A., Jasielczuk I., Ząbek T., Ropka-Molik K., Litwińczuk Z., Bugno-Poniewierska M. (2019). A comprehensive analysis of runs of homozygosity of eleven cattle breeds representing different production types. Animals (Basel), 9: 1024. Search in Google Scholar

Szmatoła T., Gurgul A., Jasielczuk I., Oclon E., Ropka-Molik K., Stefaniuk-Szmukier M., Polak G., Tomczyk-Wrona I., Bugno-Poniewierska M. (2022). Assessment and distribution of runs of homozygosity in horse breeds representing different utility types. Animals (Basel), 12: 3293. Search in Google Scholar

Tian Z., Zhang Y., Zhang H., Sun Y., Mao Y., Yang Z., Li M. (2022). Transcriptional regulation of milk fat synthesis in dairy cattle. J. Funct. Foods, 96: 105208. Search in Google Scholar

Topolski P., Jagusiak W. (2019). Inbreeding in a population of Polish Holstein-Friesian young bulls before and after genomic selection. Ann. Anim. Sci., 20: 71–83. Search in Google Scholar

Tsartsianidou V., Sánchez-Molano E., Kapsona V.V., Basdagianni Z., Chatziplis D., Arsenos G., Triantafyllidis A., Banos G. (2021). A comprehensive genome-wide scan detects genomic regions related to local adaptation and climate resilience in Mediterranean domestic sheep. Genet. Sel. Evol., 53: 90. Search in Google Scholar

van den Berg I., Fritz S., Rodriguez S., Rocha D., Boussaha M., Lund M.S., Boichard D. (2014). Concordance analysis for QTL detection in dairy cattle: a case study of leg morphology. Genet. Sel. Evol., 46: 31. Search in Google Scholar

van den Berg I., Hayes B.J., Chamberlain A.J., Goddard M.E. (2019). Overlap between eQTL and QTL associated with production traits and fertility in dairy cattle. BMC Genom., 20: 291. Search in Google Scholar

Viitala S., Szyda J., Blott S., Schulman N., Lidauer M., Mäki-Tanila A., Georges M., Vilkki J. (2006). The role of the bovine growth hormone receptor and prolactin receptor genes in milk, fat and protein production in Finnish Ayrshire dairy cattle. Genetics, 173: 2151–2164. Search in Google Scholar

Vries L.D., Casey T., Dover H., VandeHaar M.J., Plaut K. (2011). Effects of transforming growth factor-β on mammary remodeling during the dry period of dairy cows. J. Dairy Sci., 94: 6036–6046. Search in Google Scholar

Wang J., Lou S.S., Wang T., Wu R.J., Li G., Zhao M., Lu B., Li Y.Y., Zhang J., Cheng X., Shen Y., Wang X., Zhu Z.C., Li M.J., Takumi T., Yang H., Yu X., Liao L., Xiong Z.Q. (2019). UBE3A-mediated PTPA ubiquitination and degradation regulate PP2A activity and dendritic spine morphology. Proc. Natl. Acad. Sci. USA, 116: 12500–12505. Search in Google Scholar

Wang X., Li G., Ruan D., Zhuang Z., Ding R., Quan J., Wang S., Jiang Y., Huang J., Gu T., Hong L., Zheng E., Li Z., Cai G., Wu Z., Yang J. (2022). Runs of homozygosity uncover potential functionalaltering mutation associated with body weight and length in two Duroc pig lines. Front. Vet. Sci., 9: 832633. Search in Google Scholar

Weber C., Hametner C., Tuchscherer A., Losand B., Kanitz E., Otten W., Sauerwein H., Bruckmaier R.M., Becker F., Kanitz W., Hammon H.M. (2013). Hepatic gene expression involved in glucose and lipid metabolism in transition cows: effects of fat mobilization during early lactation in relation to milk performance and metabolic changes. J. Dairy Sci., 96: 5670–5681. Search in Google Scholar

Williams J.L., Hall S.J.G., Del Corvo M., Ballingall K.T., Colli L., Ajmone Marsan P., Biscarini F. (2016). Inbreeding and purging at the genomic level: the Chillingham cattle reveal extensive, nonrandom SNP heterozygosity. Anim. Genet., 47: 19–27. Search in Google Scholar

Ye T., Shaukat A., Yang L., Chen C., Zhou Y., Yang L. (2022). Evolutionary and association analysis of buffalo FABP family genes reveal their potential role in milk performance. Genes (Basel), 13: 600. Search in Google Scholar

Zhang H., Wu Z., Yang L., Zhang Z., Chen H., Ren J. (2021). Novel mutations in the Myo5a gene cause a dilute coat color phenotype in mice. FASEB J., 35: e21261. Search in Google Scholar

Zhao G.F., Chen H., Lei C.Z., Zhang C.L., Zhang L., Lan X.Y., Fang X.T., Kang X.T. (2007). Study on SNPs of GHR gene and its associations with growth traits in Qinchuan cattle. Yi Chuan., 29: 319–323. Search in Google Scholar

Zhou H., Cheng L., Azimu W., Hodge S., Edwards G.R., Hickford J.G.H. (2015). Variation in the bovine FABP4 gene affects milk yield and milk protein content in dairy cows. Sci. Rep., 5: 10023. Search in Google Scholar

Zinovieva N.A., Dotsev A.V., Sermyagin A.A., Deniskova T.E., Abdelmanova A.S., Kharzinova V.R., Sölkner J., Reyer H., Wimmers K., Brem G. (2020). Selection signatures in two oldest Russian native cattle breeds revealed using high-density single nucleotide polymorphism analysis. PLoS One., 15(11):e0242200. Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine