Zacytuj

Abakari G., Luo G., Kombat E.O. (2021). Dynamics of nitrogenous compounds and their control in biofloc technology (BFT) systems: A review. Aquac. Fish., 6: 441–447. Search in Google Scholar

Aguilera-Rivera D., Prieto-Davo A., Rodriguez-Fuentes G., Escalante-Herrera K.S., Gaxiola G. (2019). A vibriosis outbreak in the Pacific white shrimp, Litopenaeus vannamei reared in biofloc and clear seawater. J. Invertebr. Pathol., 167: 1–7. Search in Google Scholar

Avnimelech Y. (2009). Biofloc technology-A practical guide book. The world Aquaculture Society, Baton Rouge, Louisiana, United States., 182. Search in Google Scholar

Ballester E.L.C., Marzarotto S.A., de Castro C.S., Frozza A., Pastore I., Abreu P.C. (2017). Productive performance of juvenile freshwater prawns Macrobrachium rosenbergii in biofloc system. Aquac. Res., 48: 4748–4755. Search in Google Scholar

Brito L.O., Junior L de O.C., Lavander H.D., de Abreu J.L., Severi W., Galvez A. O. (2018). Bioremediation of shrimp biofloc wastewater using claim, seaweed and fish. Chem Ecol., 34: 901–913. Search in Google Scholar

Costa L.C., de O., Poersch L.H., da Silva, Abreu, P.C. (2021). Biofloc removal by the oyster Crassostrea gasar as candidate species to an Integrated Multi-Tropic Aquaculture (IMTA) System with the marine shrimp Litopenaeus vannamei. Aquaculture, 540: 1–5. Search in Google Scholar

Dauda A.B. (2019). Biofloc technology: a review on the microbial interactions, operational parameters and implications to disease and health management of cultured aquatic animals. Rev. Aquac., 1–1. Search in Google Scholar

Da silva A.E.M., Brito L.O., da Silva D.A., de Lima P.C.M., Farias R., da S., Galvez A.O., da Silva S.M.B.C. (2021). Effect of Branchious plicatilis and Navicula sp. on Pacific white shrimp growth performance, Vibrio, immunological responses and resistance to white spot virus (WSSV) in nursery biofloc system. Aquaculture, 535: 1–9. Search in Google Scholar

Dutra F.M., Rio G.S., Zadinelo I.V., Ballester E.L.C. (2020). Exposure of Macrobrachium rosenbergii (De Man, 1879) post-larvae to different nitrate concentrations: Effect on performance and welfare. Aquaculture, 520: 1–6. Search in Google Scholar

El-Sayed A-F. M. (2020. Use of biofloc technology in shrimp aquaculture: a comprehensive review, with emphasis on the last decade. Rev. Aquac., 13: 676–705. Search in Google Scholar

Emerenciano M.G.C., Martinez-Cordova L. R., Martinez-Porchas M., Miranda-Baeza A. (2016). Biofloc Technology (BFT): A tool for water quality management in aquaculture. In (Ed), Water Quality. IntechOpen. Search in Google Scholar

FAO. (2020). Food and Agriculture Organization of the United Nation (2020) global Aquaculture Production 1950–2018. Search in Google Scholar

Fisher H., Romano N., Renukdas N., Egnew N., Sinha A.K., Ray A.J. (2020). The potential for rearing juveniles of bluegill, Lepomis macrohirus, in a biofloc system. Aquac. Rep., 17. Search in Google Scholar

Fleckenstein L.J., Tierney T.W., Fisk J.C., Ray A.J. (2019). Effects of supplemental LED lighting on water quality and Pacific white shrimp (Litopenaeus vannamei) performance in intensive recirculating systems. Aquaculture, 504: 219–226. Search in Google Scholar

Frozza A., Fiorini A., Vendruscolo E.C.G., Rosado F.R., Konrad D., Rodrigues M.C.G., Ballester E.L.C. (2021). Probiotic in the rearing of freshwater prawn Macrobrachium rosenbergii (de Man, 1879) in a biofloc system. Aquac. Res., 00: 1–9. Search in Google Scholar

Gallardo-Collli A., Perez-rostro C.I., Hernandez-Vergara M.P. (2019). Reuse of water from biofloc technology for intensive culture of Nile tilapia (Oreochromis niloticus): effects on productive performance, organosomatic indices and body composition. Int. Aquat. Res., 11: 43–55. Search in Google Scholar

Handl J. (2019). Engineering Bioflocs in Recirculation Aquaculture Systems for bivalves. Masters Dissertation submitted to Ghent University. 1–75pp.Search in Google Scholar

Harun A.A.C., Mohammad N.A.H., Ikhwanuddin M., Jauhari I., Sohaili J., Kasan N.A. (2019). Effect of different aeration units, nitrogen types and inoculum on biofloc formation for improvement of Pacific Whiteleg shrimp production. Egypt. J. Aquat. Res., 45: 287–292.Search in Google Scholar

Hisano H., Philipe T.L., Barbosa M.S., Liliam A.H., Mattioli C.C. (2020). Evaluating Nile tilapia, giant freshwater prawns in biofloc and RAS. Global Aquacult. Advocate, 1–5.Search in Google Scholar

Hosain M.E., Amin S.M.N, Arshad A., Kamarudin M.S., Karim M. (2021). Effect of carbon sources on the culture of giant river prawn in biofloc system during nursery phase. Aquac. Rep., 19: 1–9.Search in Google Scholar

Huang I., Guo H., Chen C., Huang X., Chen W., Bao F., Liu W., Wang S., Zhang D. (2020). The bacteria from large sized bioflocs are more associated with the shrimp gut microbiota in culture system. Aquaculture, 523: 1–9.Search in Google Scholar

Jamal M.T., Broom M., Al-Mur B., Al Harbi M., Ghandourah M., Otaibi A.A. Haque M.F. (2020). Biofloc Technology Emerging Microbial Biotechnology for the Improvement of Aquaculture Productivity. Pol. J. Microbiol., 69: 401–409.Search in Google Scholar

Jatoba A., Legarda E.C., Stockhausen L., Vieira F., do N. (2020). First report: Amazon River Prawn reared in biofloc technology. Rev. Cienc. Agrovet., 19: 377–380Search in Google Scholar

Jiang W., Ren W., Li L., Dong S., Tian X. (2020). Light and carbon sources addition alter microbial community in biofloc-based Litopenaeus vannamei culture systems. Aquaculture, 515: 1–9.Search in Google Scholar

Kasan N.A., Manan H. Lal M.T.M., Abdul Rahim A.I., Kamaruzzan A.S., Ishak A.N., Ikhwanuddin M. (2022). A Novel study on the effect of Rapid Biofloc as Pellet Feed on the Survival rate and water quality of Mud Crab, Scylla olivacea culture. J. Sustain. Sci. Manag., 17: 46–54.Search in Google Scholar

Kasan N.A., Yee C.S., Manan H., Abdul Rahim A.I., Kamruzzam A.S., Waiho K., Lam S.S., Mahari W.A.W., Ikhwanuddin M., Suratman S., Lal M.T.M. (2021). Study on theSearch in Google Scholar

Implementation of Different Biofloc Sedimentable Solids in Improving the Water Quality and Survival Rate of Mud Crab, Scylla paramamosain larvae Culture. Aquac. Res., 52: 4807–4815.Search in Google Scholar

Kasan N.A., Kamaruzzan A.S., Rahim A.IA., Ishak A.N., Jauhari I., Ikhwanuddin M. (2019). Production of Pacific Whiteleg shrimp, Litopenaeus vannamei through implementation of rapid biofloc technology. IOP Conf. Ser.: Earth Environ. Sci., 370: 1–10.Search in Google Scholar

Kasan N.A., Dagang A.N., Abdullah M.I. (2018). Application of biofloc technology (BFT) in shrimp aquaculture industry. IOP Conf. Ser.: Earth Environ. Sci., 196: 1–8.Search in Google Scholar

Khanjani M.H., Torfi Mozanzade M., Sharifinia M., Emerenciano M.G.C. (2023a). Biofloc: A sustainable dietary supplement, nutritional value and functional properties. Aquaculture, 562: 738–757.Search in Google Scholar

Khanjani M.H., da Silva L.O.B., Foes G.K., Vieira F.D., Poli M., Santos M., Emerenciano M.G.C. (2023b). Synbiotics and aquamimicry as alternative microbial-based approaches in intensive shrimp farming and biofloc: Novel disruptive techniques or complementary management tools? A scientific-based overview. Aquaculture, 567: 1–8.Search in Google Scholar

Khanjani M.H., Sharifinia M., Emerenciano M.G.C. (2023c). A detailed look at the impacts of biofloc on immunological and hematological parameters and improving resistance to diseases. Fish Shellfish Immunol., 137: 1–18.Search in Google Scholar

Khanjani M.H., Mohammadi A., Emerenciano M.G.C. (2022a). Microorganisms in biofloc aquaculture system. Aquac. Rep., 26: 1–17.Search in Google Scholar

Khanjani M.H., Sharifinia M. (2022a). Biofloc technology with addition molasses as carbon sources applied to Litopenaeus vannamei juvenile production under the effects of different C/N ratios. Aquacult. Int., 30: 383–397.Search in Google Scholar

Khanjani M.H., Sharifinia M. (2022b). Biofloc as a food source for Banana shrimp (Fenneropenaeus merguiensis) postlarvae. N. Am. J. Aquac., 45: 469–479.Search in Google Scholar

Khanjani M.H., Eslami J., Ghaedi G., Sourinejad I., (2022) The effects of different stocking densities on nursery performance of banana shrimp (Fenneropenaeus merguiensis) reared under biofloc condition. Ann. Anim. Sci., 22: 1291–1299.Search in Google Scholar

Khanjani M.H., Sharifinia M. (2020). Biofloc technology as a promising tool to improve aquaculture production. Rev. Aquac., 12: 1836–1850.Search in Google Scholar

Khanjani M.N., Sajjadi M.M., Alizadeh M., Sourinejad I. (2019). Nursery performance of Pacific white shrimp (Litopenaues vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquac. Res., 48: 1491–1501.Search in Google Scholar

Khanjani M.H, Alizadeh M., Sharifinia M. (2020). Rearing of the Pacific white shrimp, Litopenaeus vannamei in a biofloc system: The effects of different food sources and salinity levels. Aquac. Nutr., 26: 328–337.Search in Google Scholar

Khoa T.N.D., Tao C.T., Khanh L.V., Hai T.N. (2020). Super-intensive culture of Whiteleg shrimp (Litopenaeus vannamei) in outdoor biofloc systems with different sunlight exposure levels: Emphasis on commercial applications. Aquaculture, 524: 1–11.Search in Google Scholar

Krummenauer D., Abreu P.C., Poersch L., Reis P.A.C.P., Suita S.M., Reis W.G., Wasielesky Jr. (2020). The relationship between shrimp (Litopenaeus vannamei) size and biofloc consumption determined by the stable isotope technique. Aquaculture, 529: 1–9.Search in Google Scholar

Kaya D., Genc E., Genc M. A., Aktas M., Eroldogan O.T., Guroy D. (2020). Biofloc technology in recirculating aquaculture system as a culture model for green tiger shrimp, Penaeus semisulcatus: Effects of different feeding rates and stocking densities. Aquaculture, 528: 1–11.Search in Google Scholar

Kumar V., Wille M., Laurenco T.M., Bossier P., 2020. Biofloc-Based Enhanced Survival of Litopenaeus vannamei Upon AHPND-Causing Vibrio parahaemolyticus challenge is partially mediated by reduced Expression of Its virulence genes. Front. Microbiol., 11: 1–12.Search in Google Scholar

Li J., Huang J., Li C., Zhang Y., Wang Y., Hou S., Cheng Y., Li J. (2021). Evaluation of the nutritional quality of edible tissues (muscle and hepatopancreas) of cultivated Procambarus clarkii using biofloc technology. Aquac. Rep., 19: 1–8.Search in Google Scholar

Li J., Li W., Sun Y., Liu X., Liu M., Cheng Y. (2019). Juvenile Procambarus clarkii farmed using biofloc technology or commercial feed in zero-water exchange indoor tanks: A comparison of growth performance, enzyme activity and proximate composition. Aquac. Res., 50: 1834–1843.Search in Google Scholar

Li J., Chenf Y., Wang H., Wang J., Chen H., Li J. (2018). Effect of different condition on the flocculation of feeding organisms of Procambarus clarkii juvenile. South China Fish. Sci., 14: 58–64.Search in Google Scholar

Lima P.C.M., Silva A.E.M., Silva D.A., Silva S.M.B.C., Brito L.O., Galvez A.O. (2021). Effect of stocking density of Crassostrea sp. in a multitrophic biofloc system with Litopenaeus vannamei in nursery. Aquaculture, 530: 1–11.Search in Google Scholar

Liu H., Li H., Wei H., Zhu X., Han D., Jin J., Yang Y., Xie S. (2019). Biofloc formation improves water quality and fish yield in a freshwater pond aquaculture system. Aquaculture, 506: 256–269.Search in Google Scholar

Llario F., Romano L.A., Rodilla M., Sebastia-Frasquet M.T., Poersch L.H. (2018). Application of Bacillus amyloliquefaciens as probiotic for Litopenaeus vannamei (Boone, 1931) cultivated in biofloc system. Iran. J. Fish. Sci., 19: 904–920.Search in Google Scholar

Lunda R., Roy, K., Dvorak P., Kouba A., Mraz J., 2020. Recycling biofloc waste as novel protein source for crayfish with special reference to crayfish nutritional standards and growth trajectory. Sci. Rep., 10:1–10.Search in Google Scholar

Manan H., Rosland N.A. Mat Deris Z., Che Hashim N.F., Kasan N.A., Ikhwanuddin M., Suloma A., Fauzan, F. (2022). 16S rRNA sequences of Exiguobacterium spp. bacteriaSearch in Google Scholar

dominant in a biofloc pond cultured with whiteleg shrimp, Penaeus vannamei. Aquac. Res.,53: 2029–2041.Search in Google Scholar

Manan H., Amin-Safwan A., Kasan N.A., Ikhwanuddin M. (2020). Effect of Biofloc Application on Survival Rate, Growth Performance and Specific Growth Rate of Pacific Whiteleg Shrimp, Peneus vannamei culture in closed hatchery system. Pak. J. Biol. Sci., 23: 1563–1571.Search in Google Scholar

Manan H., Moh J.H.Z., Kasan N.A., Suratman S., Ikhwanuddin M. (2017). Identification of biofloc microscopic composition as the natural bioremediation in zero water exchange of Pacific white shrimp, Penaeus vannamei, culture in closed hatchery system. Appl. Water Sci., 1–10.Search in Google Scholar

Martinez K.C., Monroy-dosta M. del.C., Partida A.H., Hernandez-Vergar M.P, Beccerril-Cortes D., Lopez-Garcia E.L. (2020). A review of the use of probiotics in freshwater prawn (Macrobrachium sp.) culture in biofloc systems). Lat. Am. J. Aquat. Res., 48: 518–528.Search in Google Scholar

Menaga M., Felix S., Charulatha M., Gopalakanna A., Mohanasundari C., Boda S. (2020). In vivo efficiency of Bacillus sp. isolated from biofloc system on growth, haematological, immunological and anti-oxidant status of genetically improved farmed tilapia (GIFT). IndianSearch in Google Scholar

J. Exp. Biol., 58: 714–721.Search in Google Scholar

Mendez C.A., Morales M.C., Merino G.E.M. (2021). Settling velocity distribution of bioflocules generated with different carbon sources during the rearing of the river shrimp Cryphiops caementarius with biofloc technology. Aquac Eng., 93: 1–9.Search in Google Scholar

Miao, S., Hu, J., Wan, W., Han, B., Zhou, Y., Xin, Z., Sun, L., 2020. Biofloc technology with addition of different carbon sources altered the antibacterial and antioxidant response in Macrobrachium rosenbergii to acute stress. Aquaculture, 525,1–7pp.Search in Google Scholar

Negrini C., de Castro C.S., Bittencourt-Guimaraes A.T., Frozza A., Kracizy R.O., Cupertino-Ballester E.L. (2017). Stocking density for freshwater prawn Macrobrachium rosenbergii (Decapoda, Palaemonidae) in biofloc system. Lat. Am. J. Aquat. Res., 45: 1–9.Search in Google Scholar

Nguyen N.H.Y., Trinh L.T., Chau D.T., Baruah K., Lundh T., Kiessling A. (2019). Spent brewer’s yeast as a replacement for fishmeal in diets for giant freshwater prawn (Macrobrachium rosenbergii), reared in either clear water or a biofloc environment. Aquac. Nutr., 25: 970–979.Search in Google Scholar

Ogello E. O., Outa N.O., Obiero K. O., Kyule D.N., Munguti J.M. (2021). The prospects of biofloc technology (BFT) for sustainable aquaculture development. Sci. Afr., 14: 1–11.Search in Google Scholar

Ong Q.M., Fotedar R., Ho T.T.T. (2019). Impact of different rearing systems on survival, growth and quality of mud crab (Scylla paramamosain) megalopae reared from early zoeae. Aquac. Int., 27: 1673–1687.Search in Google Scholar

Panigrahi A., Esakkiraj P., Das R.R.D., Sarnya C., Vinay T.N., Otta S.K., Shekhar M.S. (2021). Bioaugmentation of biofloc system with enzymatic bacterial strains for high health and production performance of Penaeus indicus. Sci. Rep., 11: 1–13.Search in Google Scholar

Panigrahi A., Das R.R., Sivakumar M.R., Saravanan A., Saranya C., Sudheer N.S., Kumaraguru Vasagam KP, Mahalakshmi P., Kannappan S., Gopikrishna G. (2020). Bio-augmentation of heterotrophic bacteria in biofloc system improves growth, survival, and immunity of Indian white shrimp Penaeus indicus. Fish Shellfish Immunol., 98:477–487.Search in Google Scholar

Pinto P.H.O., Rocha J.L., Figueiredo P.do V., Carneiro R.F.S., Damian C., de Oliveira L., Seiffert W.Q. (2020). Culture of marine shrimp (Litopenaeus vannamei) in biofloc technology system using artificially salinized freshwater: Zootechnical performance, economics and nutritional quality. Aquaculture, 520: 1–6.Search in Google Scholar

Putra I., Effendi I., Lukistyowati I., Tang U.M., Fauzi M., Suharman I., Muchlisin Z. A. (2020). Effect of different biofloc starters on ammonia, nitrate, and nitrite concentrations in the cultures tilapia Oreochromis niloticus system. F1000 Research., 9: 1–13.Search in Google Scholar

Rajeev R., Kiran G.S., Selvin J. (2020). Healthy microbiome: a key to successful and sustainable shrimp aquaculture. Rev. Aquac., 13: 238–258.Search in Google Scholar

Romano N. (2021). Probiotic, prebiotics, biofloc systems, and other biofloc regimens in fish and shellfish aquaculture. Aquac. Pharmacol., 220–242.Search in Google Scholar

Sudha A., Bhavan P.S. Manjula T., Kalpana R, Karthik M. (2019). Bacillus licheniformis as a probiotic bacterium for culture of the prawn Macrobrachium rosenbergii. Res. J. Pharm. Biol. Chem. Sci., 5: 44–61.Search in Google Scholar

Supriatna A., Nurhatijah N., Sarong M.A., Muchlisin Z.A. (2019). Effect of biofloc density and crude protein level in the diet on the growth performance, survival rate, and feed conversion ratio of Black tiger Prawn (Penaeus monodon). IOP Conf. Ser.: Earth Environ. Sci., 348: 1–7.Search in Google Scholar

Tinh T.H., Koppenol T., Hai T.N., Verreth J.A.J., Verdegem M.C.J. (2021). Effect of carbohydrate sources on the biofloc nursery system for Whiteleg shrimp (Litopenaeus vannamei). Aquaculture, 531: 1–10.Search in Google Scholar

Tong R., Chen W., Pan L., Zhang K. (2020). Effects of feeding level and C/N ratio on water quality, growth performance, immune and antioxidant status of Litopenaeus vannamei in zero-water exchange bioflocs-based outdoor soil culture ponds. Fish Shellfish Immunol., 101: 126–134.Search in Google Scholar

Walker D. A.U., Suazo MC.M., Emerenciano. M.G.C. (2020). Biofloc technology: principles focused on potential species and the case study of Chilean river shrimp Cryphiops caementrius. Rev. Aquac., 12: 1759–1782.Search in Google Scholar

Xu W-J., Morris T.C., Samocha T.M. (2018). Effects of two commercial feeds for semi-intensive and hyper-intensive culture and four C/N ratios on water quality and performance of Litopenaeus vannamei juveniles at high density in biofloc-based, zero-exchange outdoor tanks. Aquaculture, 490: 194–202.Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine