Otwarty dostęp

Multi-faceted characterization of mesenchymal stem cells and their application as a powerful tool for agrobiotechnology, assisted reproductive technologies, and veterinary and regenerative biomedicine – a review


Zacytuj

Abdalmula A., Dooley L.M., Kaufman C., Washington E.A., House J.V., Blacklaws B.A., Ghosh P., Itescu S., Bailey S.R., Kimpton W.G. (2017). Immunoselected STRO-3+ mesenchymal precursor cells reduce inflammation and improve clinical outcomes in a large animal model of monoarthritis. Stem Cell Res. Ther., 8: 22. Search in Google Scholar

Al Faqeh H., Nor Hamdan B.M., Chen H.C., Aminuddin B.S., Ruszymah B.H. (2012). The potential of intra-articular injection of chondrogenic-induced bone marrow stem cells to retard the progression of osteoarthritis in a sheep model. Exp. Gerontol., 47: 458–464. Search in Google Scholar

Almalki S.G., Llamas Valley Y., Agrawal DK. (2017). MMP-2 and MMP-14 silencing inhibits VEGFR2 cleavage and induces the differentiation of porcine adipose-derived mesenchymal stem cells to endothelial cells. Stem Cells Transl. Med., 6: 1385–1398. Search in Google Scholar

Al-Najar M., Khalil H., Al-Ajlouni J., Al-Antary M., Hamdan M., Rahmeh R., Alhattab D., Samara O., Yasin M., Al Abdullah A., Al-Jabbari E., Hmaid D., Jafar H., Awidi A. (2017). Intra-articular injection of expanded autologous bone marrow mesenchymal cells in moderate and severe knee osteoarthritis is safe: a phase I/II study. J. Orthop. Surg. Res., 12: 190. Search in Google Scholar

Araújo A.B., Salton G. D., Furlan J.M., Schneider N., Angeli M.H., A.M., Silla L., Eduardo Passos P., Paz A.H. (2017). Comparison of human mesenchymal stromal cells from four neonatal tissues: Amniotic membrane, chorionic membrane, placental decidua and umbilical cord. Cytotherapy, 19: 577–585. Search in Google Scholar

Ascari I.J., Martins S.C., Camargo L.S.A., Mendez Otero R., Jasmin. (2018). Development of bovine embryos in vitro in coculture with murine mesenchymal stem cells and embryonic fibroblasts. Mol. Biol. Rep., 45: 1827–1837. Search in Google Scholar

Barberini D.J., Pereira Paiva Freitas N., Sartori Magnoni M., Maia L., Listoni A.J., Heckler MC., Sudano M.J., Golim M.A., da Cruz Landim-Alvarenga F., Rogério Martins Amorim R.M. (2014). Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential. Stem Cell Res. Ther., 5: 25. Search in Google Scholar

Cahuascanco B., Bahamonde J., Huaman O., Jervis M., Cortez J., Palomino J., Escobar A., Retamal P., Torres C.G., Peralta O.A. (2019). Bovine fetal mesenchymal stem cells exert antiproliferative effect against mastitis causing pathogen Staphylococcus aureus. Vet. Res., 50: 25. Search in Google Scholar

Caminal M., Fonseca C., Peris D., Moll X., Rabanal R.M., Barrachina J., Codina D., García F., Ciro J.J., Gòdia F., Arnau Pla A., Vives J. (2014). Use of a chronic model of articular cartilage and meniscal injury for the assessment of long-term effects after autologous mesenchymal stromal cell treatment in sheep. N. Biotechnol., 31: 492–498. Search in Google Scholar

Chung D.J., Hayashi K., Toupadakis C.A., Wongb A., Yellowley C.E. (2012). Osteogenic proliferation and differentiation of canine bone marrow and adipose tissue derived mesenchymal stromal cells and the influence of hypoxia. Res. Vet. Sci., 92: 66–75. Search in Google Scholar

Costa C.R., Feitosa M.L., Rocha A.R., Bezerra D.O., Leite Y.K.C., Argolo Neto N.M., Rodrigues H.W.S., Sousa A. Junior., Silva A.S., Sarmento J.L., Silva L.S., Carvalho A.M. (2019). Adipose stem cells in reparative goat mastitis mammary gland. PLoS One, 14(10): e0223751. Search in Google Scholar

Dar E.R., Gugjoo M.B., Javaid M., Hussain S., Fazili M.R., Dhama K., Alqahtani T., Alqahtani A.M., Shah R.S., Emran T.B. (2021). Adipose tissue- and bone marrow-derived mesenchymal stem cells from sheep: culture characteristics. Animals, 11: 2153. Search in Google Scholar

Dar E.R., Makhdoomi D.M., Gugjoo M.B., Shah S.A., Ahmad S.M., Shah R.A., Ahmad S.R., Parrah J.U.D. (2022). Cryopreserved allogeneic mesenchymal stem cells enhance wound repair in full thickness skin wound model and cattle clinical teat injuries. Curr. Res. Transl. Med., 70: 103356. Search in Google Scholar

Dariolli R., Bassaneze V., Nakamuta J.S., Omae S.V., Gastalho Campos L.C., Krieger J.E. (2013). Porcine adipose tissue-derived mesenchymal stem cells retain their proliferative characteristics, senescence, karyotype and plasticity after long-term cryopreservation. PLoS One, 8: e67939. Search in Google Scholar

De Moraes C.N., Maia L., Dias M.C., Dell’Aqua C.P., da Mota L.S., Chapwanya A., Landim-Alvarenga F.D., Oba E. (2016). Bovine endometrial cells: A source of mesenchymal stem/progenitor cells. Cell. Biol. Int., 40: 1332–1339. Search in Google Scholar

Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8: 315–317. Search in Google Scholar

Dubey A., Saini S., Sharma V., Malik H., Kumar D., De A.K., Bhattacharya D., Malakar D. (2022). Deducing insulin-producing cells from goat adipose tissue-derived mesenchymal stem cells. Cell. Reprogram., 24: 195–203. Search in Google Scholar

Elkhenany H., Amelse L., Andersen Lafont A., Bourdo S., Caldwell M., Neilse N., Dervishi E., Derek O., Biris A.S., Anderson D., Dhar M. (2015). Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: potential for bone tissue engineering. J. Appl. Toxicol., 35: 367–374. Search in Google Scholar

Faast R., Harrison S.J., Beebe L.F., McIlfatrick S.M., Ashman R.J., Nottle M.B. (2006). Use of adult mesenchymal stem cells isolated from bone marrow and blood for somatic cell nuclear transfer in pigs. Cloning Stem Cells, 8: 166–173. Search in Google Scholar

Fraser J.K., Wulur I., Alfonso Z., Hedrick M.H. (2006). Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol., 24: 150–154. Search in Google Scholar

Gao F., Wua Y., Wenc H., Zhua W., Renc H., Guana W., Tiana X. (2019) Multilineage potential research on pancreatic mesenchymal stem cells of bovine. Tissue Cell, 56: 60–70. Search in Google Scholar

Gazdic M., Simovic Markovic B., Vucicevic L., Nikolic T., Djonov V., Arsenijevic N., Trajkovic V., Lukic M.L., Volarevic V. (2018). Mesenchymal stem cells protect from acute liver injury by attenuating hepatotoxicity of liver natural killer T cells in an inducible nitric oxide synthase- and indoleamine 2,3-dioxygenase-dependent manner. J. Tissue Eng. Regen. Med., 12: e1173–e1185. Search in Google Scholar

Ghai S., Saini S., Ansari S., Verma V., Chopra S., Sharma V., Devi P., Malakar D. (2022). Allogenic umbilical cord blood-mesenchymal stem cells are more effective than antibiotics in alleviating subclinical mastitis in dairy cows. Theriogenology, 187: 141–151. Search in Google Scholar

Gorczyca G., Wartalski K., Wiater J., Samiec M., Tabarowski Z., Duda M. (2021). Anabolic steroids-driven regulation of porcine ovarian putative stem cells favors the onset of their neoplastic transformation. Int. J. Mol. Sci., 22: 11800. Search in Google Scholar

Gugjoo M.B., Amarpal, Makhdoomi D.M., Sharma G.T. (2019). Equine mesenchymal stem cells: properties, sources, characterization, and potential therapeutic applications. J. Equine Vet. Sci., 72: 16–27. Search in Google Scholar

Heinola T., de Grauw J.C., Virkki L., Kontinen A., Raulo S.M., Sukura A., Konttinen Y.T. (2013). Bovine chronic osteoarthritis causes minimal change in synovial fluid. J. Comp. Pathol., 148: 335–344. Search in Google Scholar

Hill A.B.T., Bressan F.F., Murphy B.D., Garcia J.M. (2019). Applications of mesenchymal stem cell technology in bovine species. Stem Cell Res. Ther., 10: 44. Search in Google Scholar

Horwitz E.M., Le Blanc K., Dominici M., Mueller I., Slaper-Cortenbach I., Marini F.C., Deans R.J., Krause D.S., Keating A. (2005). Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 7: 393–395. Search in Google Scholar

Iansante V., Chandrashekran A., Dhawan A. (2018). Cell-based liver therapies: past, present and future. Philos. Trans. R. Soc. Lond. B Biol. Sci., 373: 20170229. Search in Google Scholar

Jafarzadeh H., Nazarian H., Novin M.G., Mofarahe A.S., Eini F., Piryaei A. (2018). Improvement of oocyte in vitro maturation from mice with polycystic ovary syndrome by human mesenchymal stromal cell–conditioned media. J. Cell. Biochem., 119: 10365–10375. Search in Google Scholar

Jasmin, Peters V.M., Spray D.C., Mendez-Otero R. (2016). Effect of mesenchymal stem cells and mouse embryonic fibroblasts on the development of preimplantation mouse embryos. In Vitro Cell. Dev. Biol. Anim., 52: 497–506. Search in Google Scholar

Jin H.F., Kumar B.M., Kim J.G., Song H.J., Jeong Y.J., Cho S.K., Balasubramanian S., Choe S.Y., Rho G.J. (2007). Enhanced development of porcine embryos cloned from bone marrow mesenchymal stem cells. Int. J. Dev. Biol., 51: 85–90. Search in Google Scholar

Jurgens W.J.F.M., Kroeze R.J., Zandieh-Doulabi B., van Dijk A., Renders G.A., Smit T.H., van Milligen F.J., Ritt M.J., Helder M.N. (2013). One-step surgical procedure for the treatment of osteochondral defects with adipose-derived stem cells in a caprine knee defect: a pilot study. Biores. Open Access, 2: 315–325. Search in Google Scholar

Kangari P., Talaei-Khozani T., Razeghian-Jahromi I., Razmkhah M. (2020). Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res. Ther., 11: 492. Search in Google Scholar

Kharaziha P., Hellstrom P.M., Noorinayer B., Farzaneh F., Aghajani K., Jafari F. (2009). Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial. Eur. J. Gastroenterol. Hepatol., 21: 1199–1205. Search in Google Scholar

Kim J., Hematti P. (2009). Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp. Hematol., 37: 1445–1453. Search in Google Scholar

Kouchakian M.R., Baghban N., Moniri S.F., Baghban M., Bakhshalizadeh S., Najafzadeh V., Safaei Z., Izanlou S., Khoradmehr A., Nabipour I., Shirazi R., Tamadon A. (2021). The clinical trials of mesenchymal stromal cells therapy. Stem Cells Int., 2021: 1634782. Search in Google Scholar

Kumar B.M., Jin H.F., Kim J.G., Ock S.A., Hong Y., Balasubramanian S., Choe S.Y, Rho G.J. (2007). Differential gene expression patterns in porcine nuclear transfer embryos reconstructed with fetal fibroblasts and mesenchymal stem cells. Dev. Dyn., 236: 435–446. Search in Google Scholar

Kwong P.J., Nam H.Y., Wan Khadijah W.E., Kamarul T., Abdullah R.B. (2014). Comparison of in vitro developmental competence of cloned caprine embryos using donor karyoplasts from adult bone marrow mesenchymal stem cells vs ear fibroblast cells. Reprod. Domest. Anim., 49: 249–253. Search in Google Scholar

Lee K., Uh K., Farrell K. (2020). Current progress of genome editing in livestock. Theriogenology, 150: 229–235. Search in Google Scholar

Lee S.L., Kang E.J., Maeng G.H., Kim M.J., Park J.K., Kim T.S., Hyun S.H., Lee E.S., Rho G.J. (2010). Developmental ability of miniature pig embryos cloned with mesenchymal stem cells. J. Reprod. Dev., 56: 256–262. Search in Google Scholar

Li Z., He X., Chen L., Shi J., Zhou R., Xu W., Liu D., Wu Z. (2013). Bone marrow mesenchymal stem cells are an attractive donor cell type for production of cloned pigs as well as genetically modified cloned pigs by somatic cell nuclear transfer. Cell. Reprogram., 15: 459–470. Search in Google Scholar

Lian X.L., Ji L.M., Zhang N.A. (2021). Mannotriose induced differentiation of mesenchymal stem cells into neuron-like cells. J. Integr. Neurosci., 20: 125–130. Search in Google Scholar

Liu Y., Ren H., Wang J., Yang F., Li J., Zhou Y., Yuan X., Zhu W., Shi X. (2019). Prostaglandin E2 secreted by mesenchymal stem cells protects against acute liver failure via enhancing hepatocyte proliferation. FASEB J., 33: 2514–2525. Search in Google Scholar

Maldonado M., Huang T., Chen J., Zhong Y. (2018). Differentiation potential of human Wharton’s jelly-derived mesenchymal stem cells and paracrine signaling interaction contribute to improve the in vitro maturation of mouse cumulus oocyte complexes. Stem Cells Int., 2018: 7609284. Search in Google Scholar

Martinello T., Bronzini I., Maccatrozzo L., Iacopetti I., Sampaolesi M., Mascarello F., Patruno M. (2010). Cryopreservation does not affect the stem characteristics of multipotent cells isolated from equine peripheral blood. Tissue Eng. Part C. Methods, 16: 771–781. Search in Google Scholar

McDuffee L.A., Esparza Gonzalez B.P., Nino-Fong R., Aburto E. (2014). Evaluation of an in vivo heterotopic model of osteogenic differentiation of equine bone marrow and muscle mesenchymal stem cells in fibrin glue scaffold. Cell Tissue Res., 355: 327–335. Search in Google Scholar

Merlo B., Gugole P.M., Iacono E. (2022). An update on applications of cattle mesenchymal stromal cells. Animals, 12: 1956. Search in Google Scholar

Molnar V., Pavelić E., Vrdoljak K., Čemerin M., Klarić E., Matišić V., Bjelica R., Brlek P., Kovačić I., Tremolada C., Primorac D. (2022). Mesenchymal stem cell mechanisms of action and clinical effects in osteoarthritis: a narrative review. Genes, 13: 949. Search in Google Scholar

Nazari H., Shirazi A., Shams-Esfandabadi N., Afzali A., Ahmadi E. (2016). The effect of amniotic membrane stem cells as donor nucleus on gene expression in reconstructed bovine oocytes. Int. J. Dev. Biol., 60: 95–102. Search in Google Scholar

Nejat-Dehkordi S., Ahmadi E., Shirazi A., Nazari H., Shams-Esfandabadi N. (2021). Embryo co-culture with bovine amniotic membrane stem cells can enhance the cryo-survival of IVF-derived bovine blastocysts comparable with co-culture with bovine oviduct epithelial cells. Zygote, 29: 102–107. Search in Google Scholar

Niemeyer P., Fechner K., Milz S., Richter W., Suedkamp N., Mehlhorn A., Pearce S., Kasten P. (2010). Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet- rich plasma. Biomaterials, 31: 3572–3579. Search in Google Scholar

Noort W.A., Oerlemans M.I., Rozemuller H., Feyen D., Jaksani S., Stecher D., Naaijkens B., Martens A.C., Bühring H.J., Doevendans P.A., Sluijter J.P. (2012). Human versus porcine mesenchymal stromal cells: phenotype, differentiation potential, immunomodulation and cardiac improvement after transplantation J. Cell. Mol. Med., 16: 1827–1839. Search in Google Scholar

Nowicka G. (2005). Stem cells and tissue regeneration (in Polish). Studia Ecologiae et Bioethicae, 3: 109–115. Search in Google Scholar

Olivera R., Moro L.N., Jordan R., Luzzani C., Miriuka S., Radrizzani M., Donadeu F.X., Vichera G. (2016). In vitro and in vivo development of horse cloned embryos generated with iPSCs, mesenchymal stromal cells and fetal or adult fibroblasts as nuclear donors. PLoS One, 11 (10): e0164049. Search in Google Scholar

Olivera R., Moro L.N., Jordan R., Pallarols N., Guglielminetti A., Luzzani C., Miriuka S.G., Vichera G. (2018). Bone marrow mesenchymal stem cells as nuclear donors improve viability and health of cloned horses. Stem Cells Cloning, 11: 13–22. Search in Google Scholar

Opiela J., Bartel Ż., Romanek J., Wieczorek J., Wilczek P. (2013). The quality and proapoptotic protein expression ‘BAD’ in porcine MSCs and MSC-derived osteocytes and adipocytes. Ann. Anim. Sci., 13: 753–763. Search in Google Scholar

Opiela J., Lipiński D., Romanek J., Juzwa W., Bochenek M., Wilczek P. (2016). MMP-2, TIMP-2, TAZ and MEF2A transcript expression in osteogenic and adipogenic differentiation of porcine mesenchymal stem cells. Ann. Anim. Sci., 16: 369–385. Search in Google Scholar

Opiela J., Samiec M., Romanek J. (2017). In vitro development and cytological quality of inter-species (porcine→bovine) cloned embryos are affected by trichostatin A-dependent epigenomic modulation of adult mesenchymal stem cells. Theriogenology, 97: 27–33. Search in Google Scholar

Pacini S., Spinabella S., Trombi L., Fazzi R., Galimberti S., Dini F., Carlucci F., Petrini M. (2007). Suspension of bone marrowderived undifferentiated mesenchymal stromal cells for repair of superficial digital flexor tendon in race horses. Tissue Eng., 13: 2949–2955. Search in Google Scholar

Paebst F., Piehler D., Brehm W., Heller S., Schroeck C., Tárnok A., Burk J. (2014). Comparative immunophenotyping of equine multipotent mesenchymal stromal cells: an approach toward a standardized definition. Cytometry A, 85: 678–687. Search in Google Scholar

Park B.W., Kang D.H., Kang E.J., Byun J.H., Lee J.S., Maeng G.H., Rho G.J. (2012). Peripheral nerve regeneration using autologous porcine skin-derived mesenchymal stem cells. J. Tissue Eng. Regen. Med., 6: 113–124. Search in Google Scholar

Peer B.A., Bhat A.R., Shabir U., Bharti M.K., Bhat I.A., Pandey S., Sharun K., Kumar R., Mathesh K., Saikumar G., Chandra V., Amarpal, Sharma G.T. (2022). Comparative evaluation of fracture healing potential of differentiated and undifferentiated guinea pig and canine bone marrow-derived mesenchymal stem cells in a guinea pig model. Tissue Cell, 76: 101768. Search in Google Scholar

Peralta O.A., Carrasco C., Vieytes C., Tamayo M.J., Munoz I., Sepulveda S., Tadich T., Duchens M., Melendez P., Mella A., Torres C.G. (2020). Safety and efficacy of a mesenchymal stem cell intramammary therapy in dairy cows with experimentally induced Staphylococcus aureus clinical mastitis. Sci. Rep., 10: 2843. Search in Google Scholar

Perisse I.V., Fan Z., Singina G.N., White K.L., Polejaeva I.A. (2021). Improvements in gene editing technology boost its applications in livestock. Front. Genet., 11: 614688. Search in Google Scholar

Ramanathan R., Rupert S., Selvaraj S., Satyanesan J., Vennila R., Rajagopal S. (2017). Role of human Wharton’s jelly derived mesenchymal stem cells (WJ-MSCs) for rescue of d-galactosamine induced acute liver injury in mice. J. Clin. Exp. Hepatol., 7: 205–214. Search in Google Scholar

Ranera B., Lyahyai J., Romero A., Vázquez F.J., Remacha A.R., Bernal M.L., Zaragoza P., Rodellar C., Martín-Burriel I. (2011). Immunophenotype and gene expression profiles of cell surface markers of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Vet. Immunol. Immunopathol., 144: 147–154. Search in Google Scholar

Renzi S., Ricco S., Dotti S., Sesso L., Grolli S., Cornali M., Carlin S., Patruno M., Cinotti S., Ferrari M. (2013). Autologous bone marrow mesenchymal stromal cells for regeneration of injured equine ligaments and tendons: a clinical report. Res. Vet. Sci., 95: 272–277. Search in Google Scholar

Romanek J., Opiela J., Lipiński D., Smorąg Z. (2017). The effect of high hydrostatic pressure on survival rate and quality of porcine mesenchymal stem cells after cryopreservation. Anim. Biotechnol., 29: 283–292. Search in Google Scholar

Romanek J., Opiela J., Smorąg Z. (2018). The impact of high hydrostatic pressure (40 MPa and 60 MPa) on the apoptosis rates and functional activity of cryopreserved porcine mesenchymal stem cells. Ann. Anim. Sci., 18: 69–86. Search in Google Scholar

Sachs P.C., Francis M.P., Zhao M., Brumelle J., Rao R., Elmore L.W., Holt S.E. (2012). Defining essential stem cell characteristics in adipose-derived stromal cells extracted from distinct anatomical sites. Cell Tissue Res., 349: 505–515. Search in Google Scholar

Sadeesh E.M., Shah F., Yadav P.S. (2016). Differential developmental competence and gene expression patterns in buffalo (Bubalus bubalis) nuclear transfer embryos reconstructed with fetal fibroblasts and amnion mesenchymal stem cells. Cytotechnology, 68: 1827–1848. Search in Google Scholar

Samiec M. (2022). Molecular mechanism and application of somatic cell cloning in mammals – past, present and future. Int. J. Mol. Sci., 23: 13786. Search in Google Scholar

Samiec M., Opiela J., Lipiński D., Romanek J. (2015). Trichostatin Amediated epigenetic transformation of adult bone marrow-derived mesenchymal stem cells biases the in vitro developmental capability, quality, and pluripotency extent of porcine cloned embryos. Biomed Res. Int., 2015: 814686. Search in Google Scholar

Samiec M., Romanek J., Lipiński D., Opiela J. (2019). Expression of pluripotency-related genes is highly dependent on trichostatin Aassisted epigenomic modulation of porcine mesenchymal stem cells analysed for apoptosis and subsequently used for generating cloned embryos. Anim. Sci. J., 90: 1127–1141. Search in Google Scholar

Samiec M., Wiater J., Wartalski K., Skrzyszowska M., Trzcińska M., Lipiński D., Jura J., Smorąg Z., Słomski R., Duda M. (2022). The relative abundances of human leukocyte antigen-E, α-galactosidase A and α-Gal antigenic determinants are biased by trichostatin A-dependent epigenetic transformation of tripletransgenic pig-derived dermal fibroblast cells. Int. J. Mol. Sci., 23: 10296. Search in Google Scholar

Samsonraj R.M., Raghunath M., Nurcombe V., Hui J.H., van Wijnen A.J., Cool S.M. (2017). Multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl. Med., 6: 2173–2185. Search in Google Scholar

Sanjurjo-Rodríguez C., Castro-Viñuelas R., Hermida-Gómez T., Fernández-Vázquez T., Fuentes-Boquete I.M., de Toro-Santos F.J., Díaz-Prado S.M., Blanco-García F.J. (2017). Ovine mesenchymal stromal cells: morphologic, phenotypic and functional characterization for osteochondral tissue engineering. PLos One, 12: e0171231. Search in Google Scholar

Seo J.P., Tsuzuki N., Haneda S., Yamada K., Furuoka H., Tabata Y., Sasaki N. (2014). Osteoinductivity of gelatin/β-tricalcium phosphate sponges loaded with different concentrations of mesenchymal stem cells and bone morphogenetic protein-2 in an equine bone defect model. Vet. Res., 38: 73–80. Search in Google Scholar

Sharma N., Huynh D.L, Kim S.W., Ghosh M., Sodhi S.S., Singh A.K., Kim N.E., Lee S.J., Hussain K., Oh S.J., Jeong D.K. (2017). A PiggyBac mediated approach for lactoferricin gene transfer in bovine mammary epithelial stem cells for management of bovine mastitis. Oncotarget, 8: 104272–104285. Search in Google Scholar

Singh B., Mal G., Verma V., Tiwari R., Khan M.I., Mohapatra R.K., Mitra S., Alyami S.A., Emran T.B., Dhama K., Moni M.A. (2021). Stem cell therapies and benefaction of somatic cell nuclear transfer cloning in COVID-19 era. Stem Cell Res. Ther., 12: 283. Search in Google Scholar

Skrzyszowska M., Samiec M. (2021). Generating cloned goats by somatic cell nuclear transfer-molecular determinants and application to transgenics and biomedicine. Int. J. Mol. Sci., 22: 7490. Search in Google Scholar

Sobhani A., Khanlarkhani N., Baazm M., Mohammadzadeh F., Najafi A., Mehdinejadiani S., Sargolzaei F. (2017). Multipotent stem cell and current application. Aval Acta Med. Iran, 55: 6–23. Search in Google Scholar

Staff N.P., Jones D.T., Singer W. (2019). Mesenchymal stromal cell therapies for neurodegenerative diseases. Mayo Clin. Proc., 94: 892–905. Search in Google Scholar

Suk K.T., Yoon J.H., Kim M.Y., Kim C.W., Kim J.K., Park H., Hwang S.G., Kim D.J., Lee B.S., Lee S.H., Kim H.S., Jang J.Y., Lee C.H., Kim B.S., Jang, Y.O., Cho M.Y., Jung E.S., Kim Y.M., Bae S.H., Baik S.K. (2016). Transplantation with autologous bone marrowderived mesenchymal stem cells for alcoholic cirrhosis: phase 2 trial. Hepatology, 64: 2185–2197. Search in Google Scholar

Tajima M., Yuasa M., Kawanabe M., Taniyama H., Yamato O., Maede Y. (1999). Possible causes of diabetes mellitus in cattle infected with bovine viral diarrhoea virus. Zentralbl Veterinarmed B., 46: 207–215. Search in Google Scholar

Toosi S., Behravan N., Behravan J. (2018). Nonunion fractures, mesenchymal stem cells and bone tissue engineering. J. Biomed. Mater. Res. A., 106: 2552–2562. Search in Google Scholar

Uccelli A., Moretta L., Pistoia V. (2008). Mesenchymal stem cells in health and disease. Nat. Rev. Immunol., 8: 726–736. Search in Google Scholar

Uder C., Brückner S., Winkler S., Tautenhahn H.M., Christ B. (2018). Mammalian MSC from selected species: Features and applications. Cytometry A, 93: 32–49. Search in Google Scholar

Wang C., Liu H., Yang M., Bai Y., Ren H., Zou Y., Yao Z., Zhang B., Li Y. (2020). RNA-seq based transcriptome analysis of endothelial differentiation of bone marrow mesenchymal stem cells. Eur. J. Vasc. Endovasc. Surg., 59: 834–842. Search in Google Scholar

Wang Y., Wu Y., Liu Y., Zhang Y., Yang X., Gao Y., Guan W. (2022). A novel type of mesenchymal stem cells derived from bovine metanephric mesenchyme. Tissue Cell, 79: 101970. Search in Google Scholar

Wilson S.M., Monaco E., Goldwasser M.S., Clark S.G., Hurley W.L., Wheeler M.B. (2010). Migration and therapeutic potential of porcine adult adipose-derived mesenchymal stem cells. Reprod. Fertil. Dev., 22: 357. Search in Google Scholar

Xu H., Liang H. (2022). The regulation of totipotency transcription: Perspective from in vitro and in vivo totipotency. Front. Cell. Dev. Biol., 10: 1024093. Search in Google Scholar

Yamanaka S. (2020). Perspective pluripotent stem cell-based cell therapy – promise and challenges. Cell Stem Cell, 27: 523–531. Search in Google Scholar

Yang W., Zheng H., Wang Y., Lian F., Hu Z., Xue S. (2015). Nesprin-1 has key roles in the process of mesenchymal stem cell differentiation into cardiomyocyte-like cells in vivo and in vitro. Mol. Med. Rep., 11: 133–142. Search in Google Scholar

Zhai Y., Li W., Zhang Z., Cao Y., Wang Z., Zhang S., Li Z. (2018). Epigenetic states of donor cells significantly affect the development of somatic cell nuclear transfer (SCNT) embryos in pigs. Mol. Reprod. Dev., 85: 26–37. Search in Google Scholar

Zhang X., Gao S., Liu X. (2021). Advance in the role of epigenetic reprogramming in somatic cell nuclear transfer-mediated embryonic development. Stem Cells Int., 2021: 6681337. Search in Google Scholar

Zhang Y., Chu Y., Shen W., Dou Z. (2009). Effect of 5-azacytidine induction duration on differentiation of human first-trimester fetal mesenchymal stem cells towards cardiomyocyte-like cells. Interact. Cardiovasc. Thorac. Surg., 9: 943–946. Search in Google Scholar

Zhang Y., Shi L., Li X., Liu Y., Zhang G., Wang Y. (2022). Placental stem cells-derived exosomes stimulate cutaneous wound regeneration via engrailed-1 inhibition. Front. Bioeng. Biotechnol., 10: 1–13. Search in Google Scholar

Zhao S., Tao L., Tian Y., Tai D., Liu P., Liu D. (2019). Isolation and characterization of ovine umbilical cord-derived mesenchymal stem cells. Cytotechnology, 71: 277–286. Search in Google Scholar

Zuk P.A., Zhu M., Mizuno H., Huang J., Futrell J.W., Katz A.J., Benhaim P., Lorenz H.P., Hedrick M.H. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng., 7: 211–228. Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine