Otwarty dostęp

Effect of Dietary Supplementation with Fish Meal and Soybean Meal on Gastrointestinal Function in Carnivorous Companion Animals – Using Mink (Neovision vision) as a Model


Zacytuj

Ahlstrøm Ø., Skrede A. (1998). Comparative nutrient digestibility in dogs, blue foxes, mink and rats. J. Nutr., 128: 2676S–2677S. Search in Google Scholar

Ahlstrøm Ø., Fuglei E., Mydland L. (2003). Comparative nutrient digestibility of arctic foxes (Alopex lagopus) on Svalbald and farm-raised fox (Alopex lagopus). Comp. Biochem. Physiol. A – Mol. Integr. Physiol., 134: 63–68. Search in Google Scholar

Ali W., Ahmad M.M., Iftikhar F., Qureshi M., Ceyhan A. (2020). Nutritive potentials of soybean and its significance for humans health and animal production: a review. Eurasian J. Food Sci. Technol., 4: 41–53. Search in Google Scholar

AOAC (2007). Official Methods of Analysis of AOAC International.18th ed. Washington: Association of Official Analytical Chemists. Search in Google Scholar

Bahl M.I., Hammer A.S., Clausen T., Jakobsen A., Skov S., Andresen L. (2017). The gastrointestinal tract of farmed mink (Neovison vison) maintains a diverse mucosa-associated microbiota following a 3-day fasting period. Microbiologyopen, 6: e00434. Search in Google Scholar

Barczyńska R., Jurgoński A., Śliżewska K., Juśkiewicz J., Kapusniak J. (2019). Corn starch dextrin changes intestinal microbiota and its metabolic activity in rats fed a basal and high-fat diet. Br. Food J., 121: 2219–2232. Search in Google Scholar

Belzile R.J., Poliquin L.S. (1974). Effects of feeding soya flour on the performance of growing-furring mink. Can. J. Anim. Sci., 54: 385–388. Search in Google Scholar

Bjornvad C.R., Elnif J., Sangild P.T. (2004). Short-term fasting induces intra-hepatic lipid accumulation and decreases intestinal mass without reduced brush-border enzyme activity in mink (Mustela vison) small intestine. J. Comp. Physiol. B, 174: 625–632. Search in Google Scholar

Brown R.G. (1989). Protein in dog foods. Can. Vet. J., 30: 528–531. Search in Google Scholar

Capuano E. (2017). The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr., 57: 3543–3564. Search in Google Scholar

Cavanaugh S.M., Cavanaugh R.P., Gilbert G.E., Leavitt E.L., Ketzis J.K., Vieira A.B. (2021). Short-term amino acid, clinicopathologic, and echocardiographic findings in healthy dogs fed a commercial plant-based diet. PLoS One, 16: e0258044. Search in Google Scholar

Dahlman T., Kiiskinen T., Mäkelä J., Niemelä P., Syrjälä-Qvist L., Valaja J., Jalava T. (2002). Digestibility and nitrogen utilisation of diets containing protein at different levels and supplemented with DL-methionine, L-methionine and L-lysine in blue fox (Alopex lagopus). Anim. Feed Sci. Technol., 98: 219–235. Search in Google Scholar

Dashnyam P., Mudududdla R., Hsieh T.-J., Lin T.-C., Lin H.-Y., Chen P.-Y., Hsu C.-Y., Lin C.-H. (2018). β-Glucuronidases of opportunistic bacteria are the major contributors to xenobiotic-induced toxicity in the gut. Sci. Rep., 8: 16372. Search in Google Scholar

Flickinger E.A., Van Loo J., Fahey G.C. (2003). Nutritional responses to the presence of inulin and oligofructose in the diets of domesticated animals: a review. Crit. Rev. Food Sci. Nutr., 43: 19–60. Search in Google Scholar

Gugołek A., Zabłocki W., Kowalska D., Janiszewski P., Konstantynowicz M., Strychalski J. (2010). Nutrients digestibility in Arctic fox (Vulpes lagopus) fed diets containing animal meals. Arq. Bras. Med. Vet. Zoot., 62: 948–953. Search in Google Scholar

Gugołek A., Zalewski D., Strychalski J., Konstantynowicz M. (2013). Food transit time, nutrient digestibility and nitrogen retention in farmed and feral American mink (Neovison vison) – a comparative analysis. J. Anim. Physiol. Anim. Nutr., 97: 1030–1035. Search in Google Scholar

Gugołek A., Juśkiewicz J., Strychalski J., Konstantynowicz M., Zwoliński C. (2015). Nutrient digestibility and colonic fermentation processes in species of the families Mustelidae and Canidae fed the same diet. J. Exp. Zool., 323: 637–644. Search in Google Scholar

Gugołek A., Juśkiewicz J., Strychalski J., Zwoliński C., Żary-Sikorska E., Konstantynowicz M. (2017). The effects of rapeseed meal and legume seeds as substitutes for soybean meal on productivity and gastrointestinal function in rabbits. Arch. Anim. Nutr., 71: 311–326. Search in Google Scholar

Gugołek A., Strychalski J., Juśkiewicz J., Żary-Sikorska E. (2020). The effect of fish and mealworm larvae meals as alternative dietary protein sources on nutrient digestibility and gastrointestinal function in Chinchilla lanigera. Exp. Anim., 69: 70–79. Search in Google Scholar

Jiang Q., Li G., Zhang T., Zhang H., Gao X., Xing X., Yang F. (2018). Application of formulated diets and their effects on nutrient digestibility and reproductive performance of female mink (Neovison vison) during gestation. J. Appl. Anim. Res., 46: 125–129. Search in Google Scholar

Juśkiewicz J., Zduńczyk Z., Bohdziewicz K., Baranowska M. (2012). Physiological effects of the dietary application of quark produced with enzyme transglutaminase as a sole protein source in growing rats. Int. Dairy J., 26: 155–161. Search in Google Scholar

Käkelä R., Pölönen I., Miettinen M., Asikainen J. (2001). Effects of different fat supplements on growth and hepatic lipids and fatty acids in male mink. Acta Agric. Scandinavica, A – Anim. Sci., 51: 217–223. Search in Google Scholar

Knudsen K.E.B. (1997). Carbohydrate and lignin contents of plant materials used in animal feeding. Anim. Feed Sci. Technol., 67: 319–338. Search in Google Scholar

Konieczka P., Smulikowska S. (2018). Viscosity negatively affects the nutritional value of blue lupin seeds for broilers. Animal, 12: 1144–1153. Search in Google Scholar

Krogdahl Å., Ahlstrøm Ø., Burri L., Nordrum S., Dolan L., Bakke A.M., Penn M.H. (2015). Antarctic krill meal as an alternative protein source in pet foods evaluated in adult mink (Neovison vison). I. Digestibility of main nutrients and effect on reproduction. Open Access Anim. Physiol., 7: 29–42. Search in Google Scholar

Lee M.F., Russell R.M., Montgomery R.K., Krasinski S.D. (1997). Total intestinal lactase and sucrase activities are reduced in aged rats. J. Nutr., 127: 1382–1387. Search in Google Scholar

Li P., Wu G. (2023). Amino acid nutrition and metabolism in domestic cats and dogs. J. Anim. Sci. Biotechnol., 14: 1–21. Search in Google Scholar

Ljøkjel K., Harstad O.M., Skrede A. (2000). Effect of heat treatment of soybean meal and fish meal on amino acid digestibility in mink and dairy cows. Anim. Feed Sci. Technol., 84: 83–95. Search in Google Scholar

Ljøkjel K., Sørensen M., Storebakken T., Skrede A. (2004). Digestibility of protein, amino acids and starch in mink (Mustela vison) fed diets processed by different extrusion conditions. Can. J. Anim. Sci., 84: 673–680. Search in Google Scholar

Matusevicius P., Januskievicius A., Gugołek A., Zilinskiene A. (2004). The effect of use of synthetic methionine in fox (Alopex lagopus L.). Vet. Zoot., 25: 71–75. Search in Google Scholar

Messer M., Dahlqvist A. (1966). A one-step ultramicro method for the assay of intestinal disaccharidases. Analit. Biochem., 14: 376–392. Search in Google Scholar

Oba P.M., Utterback P.L., Parsons C.M., Swanson K.S. (2020). True nutrient and amino acid digestibility of dog foods made with human-grade ingredients using the precision-fed cecectomized rooster assay. Translat. Anim. Sci., 4: 442–451. Search in Google Scholar

OJEU (2010). Official Journal of the European Union. Directive 2010/63/EU of the European Parliament and of the Council on the protection of animals used for scientific purposes. (OJEU 20.10.2010, Series L 276, 33–79). Search in Google Scholar

Opstvedt J., Nygard E., Samuelsen T.A., Venturini G., Luzzana U., Mundheim H. (2003). Effect on protein digestibility of different processing conditions in the production of fish meal and fish feed. J. Sci. Food Agric., 83: 775–782. Search in Google Scholar

Review of Operational Procedures for Killing of Fur Animals (2007). Department of Agriculture, Fisheries and Food. Search in Google Scholar

Searcy-Bernal R. (1994). Statistical power and aquacultural research. Aquaculture, 127: 371–388. Search in Google Scholar

Seier L.C., Kirk R.J., Devlin T.J., Parker R.J. (1970). Evaluation of two dry protein sources in rations for growing-furring mink. Can. J. Anim. Sci., 50: 311–318. Search in Google Scholar

Skrede A. (1977). Soybean meal versus fish meal as protein source in mink diets. Acta Agric. Scand., 27: 145–155. Search in Google Scholar

Strychalski J., Juśkiewicz J., Gugołek A., Wyczling P., Daszkiewicz T., Zwoliński C. (2014). Usability of rapeseed cake and wheat-dried distillers’ grains with solubles in the feeding of growing Californian rabbits. Arch. Anim. Nutr., 68: 227–244. Search in Google Scholar

Swanson K.S., Grieshop C.M., Flickinger E.A., Bauer L.L., Wolf B.W., Chow J., Garleb K.A., Williams J.A. (2002). Fructooligosaccharides and Lactobacillus acidophilus modify bowel function and protein catabolites excreted by healthy humans. J. Nutr., 132: S3042–S3050. Search in Google Scholar

Takahashi T., Goto M., Sakata T. (2004). Viscoelastic properties of the small intestinal and caecal contents of the chicken. Brit. J. Nutr., 91: 867–872. Search in Google Scholar

Tester R.F., Karkalas J., Qi X. (2004). Starch structure and digestibility. Enzyme-substrate relationship. World Poult. Sci. J., 60: 186–195. Search in Google Scholar

Tjernsbekk M.T., Tauson A.H., Ahlstrøm Ø. (2014). Ileal, colonic and total tract nutrient digestibility in dogs (Canis familiaris) compared with total tract digestibility in mink (Neovison vison). Arch. Anim. Nutr., 68: 245–261. Search in Google Scholar

Tjernsbekk M.T., Tauson A., Matthiesen C.F., Ahlstrøm Ø. (2016). Protein and amino acid bioavailability of extruded dog food with protein meals of different quality using growing mink (Neovison vison) as a model. J. Anim. Sci., 94: 3796–3804. Search in Google Scholar

Vhile S.G., Skrede A., Ahlstrøm Ø., Hove K. (2005). Comparative apparent total tract digestibility of major nutrients and amino acids in dog (Canis familiaris), blue fox (Alopex lagopus) and mink (Mustela vison). Anim. Sci., 81: 141–148. Search in Google Scholar

Wlazło Ł., Nowakowicz-Dębek B., Czech A., Chmielowiec-Korzeniowska A., Ossowski M., Kułażyński M., Łukaszewicz M., Krasowska A. (2021). Fermented rapeseed meal as a component of the mink diet (Neovison vison) modulating the gastrointestinal tract microbiota. Animals (Basel), 11: 1337. Search in Google Scholar

Yamka R.M., Jamikorn U., True A.D., Harmon D.L. (2003). Evaluation of soyabean meal as a protein source in canine foods. Anim. Feed Sci. Technol., 109: 121–132. Search in Google Scholar

Yang Y., Zhang T., Rong M., Xu J., Xing X. (2021). Energy requirement for growing mink fed on diets of different energy levels. Pakistan J. Zool., 53: 1905–1912. Search in Google Scholar

Zhang H.H., Li G.Y., Ren E.J., Xing X.M., Wu Q., Yang F.H. (2012). Effects of diets with different protein and DL-methionine levels on the growth performance and N-balance of growing minks. J. Anim. Physiol. Anim. Nutr., 96: 436–441. Search in Google Scholar

Zhang T., Sun W., Yang Y., Zhong W., Bao K., Zhang T., Guo X., Li G. (2019). Effects of dietary vitamin E on the growth performance, antioxidative status, and some immunological blood parameters in growing mink (Mustela vison) fed dry feed. Can. J. Anim. Sci., 99: 772–780. Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine