1. bookTom 23 (2023): Zeszyt 4 (November 2023)
Informacje o czasopiśmie
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Otwarty dostęp

Influence of Diet Changes on the Condition and Physiological State of Juvenile Sea Trout (Salmo trutta)

Data publikacji: 13 Nov 2023
Tom & Zeszyt: Tom 23 (2023) - Zeszyt 4 (November 2023)
Zakres stron: 1131 - 1145
Otrzymano: 29 Aug 2022
Przyjęty: 24 Jan 2023
Informacje o czasopiśmie
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku

Ahmed I., Reshi Q.M., Fazio F. (2020). The influence of endogenous and exogenous factors on hematological parameters in different fish species: a review. Aquac. Int., 28: 869–899. Search in Google Scholar

American Public Health Association (APHA) (1999). Standard methods for the examination of water and wastewater. 20th Edition, APHA, Washington, USA, 1268 pp. Search in Google Scholar

AOAC (2007). Official Methods of Analysis, 18th edition. AOAC, Arlington, Virginia, USA. Search in Google Scholar

Beamish R.J., Sweeting R.M., Lange K.L., Noakes D.J., Preikshot D., Neville C.M. (2010). Early marine survival of coho salmon in the Strait of Georgia declines to very low levels. Mar. Coast. Fish., 2: 424–439. Search in Google Scholar

Bernaś R., Wąs-Barcz A. (2020). Genetic structure of important resident brown trout breeding lines in Poland. J. Appl. Gen., 61: 239–2417. Search in Google Scholar

Beyers D.W., Rice J.A., Adams S.M. (2002). Evaluating stress in fish using bioenergetics-based stressor-response models. In: Biological Indicators of Aquatic Ecosystem Stress, Adams S.M. (ed.). American Fisheries Society, Maryland, pp. 289–320. Search in Google Scholar

Brown C., Day R.L. (2002). The future of stock enhancements: lessons for hatchery practice from conservation biology. Fish Fish., 3: 79–94. Search in Google Scholar

Brown C., Laland K.N. (2002). Social enhancement and social inhibition of foraging behaviour in hatchery-reared Atlantic salmon. J. Fish Biol., 61: 987–998. Search in Google Scholar

Brown C., Markula A., Laland K. (2003). Social learning of prey location in hatchery-reared Atlantic salmon. J. Fish Biol., 63: 738–745. Search in Google Scholar

Cámara-Ruiz M., Santo C.E., Gessner J., Wuertz S. (2019). How to improve foraging efficiency for restocking measures of juvenile Baltic sturgeon (Acipenser oxyrinchus). Aquaculture, 502:–17. Search in Google Scholar

Christie M.R., Ford M.J., Blouin M.S. (2014). On the reproductive success of early-generation hatchery fish in the wild. Evol. Appl., 7: 883–896. Search in Google Scholar

Ciji A., Akhtar M.S. (2021). Stress management in aquaculture: a review of dietary interventions. Rev. Aquac., 13: 2190–2247. Search in Google Scholar

Clauss T.M., Dove A.D.M., Arnold J.E. (2008). Hematologic disorders of fish. Vet. Clin. Exot. Anim., 11: 445–462. Search in Google Scholar

Collins S., Dornburg A., Flores J.M., Dombrowski D.S., Lewbart G.A. (2016). A comparison of blood gases, biochemistry, and hematology to ecomorphology in a health assessment of pinfish (Lagodon rhomboides). PeerJ, 4: e2262. Search in Google Scholar

Costas N., Álvarez M., Pardo I. (2013). Stocking efficiency and the effects of diet preconditioning on the post-release adaptation of hatchery-reared juveniles of Atlantic salmon (Salmo salar L.) in an Atlantic temperate stream. Environ. Biol. Fish., 96: 33–44. Search in Google Scholar

Czerniawski R., Pilecka-Rapacz M., Domagała J. (2010). Growth and survival of brown trout fry (Salmo trutta m. fario L.) in the wild, reared in the hatchery on different feed. EJPAU, 13: 4. Search in Google Scholar

Czerniawski R., Domagała J., Pilecka-Rapacz M. (2011). Stocking experiment with Atlantic salmon and sea trout parr reared on either live prey or a pellet diet. J. Appl. Ichthyol., 27: 984–989. Search in Google Scholar

Czerniawski R., Domagała J., Krepski T., Pilecka-Rapacz M. (2015). Impact of live food on survival and growth of hatchery-reared sea trout (Salmo trutta trutta L.) parr in the wild. J. Appl. Ichthyol., 31: 95–99. Search in Google Scholar

Dacie J.V., Lewis S.M. (2001). Practical Hematology. 9th ed. Churchill Livingstone, London, UK, 653 pp. Search in Google Scholar

Das S., Sahoo P.K. (2014). Markers for selection of disease resistance in fish: a review. Aquac. Int., 22: 1793–1812. Search in Google Scholar

Davis A.K., Maney D.L., Maerz J.C. (2008). The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct. Ecol., 22: 760–772. Search in Google Scholar

Dębowski P. (2018). The largest Baltic population of sea trout (Salmo trutta L.): its decline, restoration attempts, and current status. Arch. Pol. Fish., 26: 81–100. Search in Google Scholar

Demska-Zakęś K., Gomułka P., Rożyński M., Zakęś Z. (2021). Effect of a short-term sodium chloride bath on juvenile pikeperch (Sander lucioperca) welfare. Aquac. Rep., 19: 100569. Search in Google Scholar

Deng J., Bi B., Kang B., Kong L., Wang Q., Zhang X. (2013). Improving the growth performance and cholesterol metabolism of rainbow trout (Oncorhynchus mykiss) fed soybean meal-based diets using dietary cholesterol supplementation. Brit. J. Nutr., 110: 29–39. Search in Google Scholar

Donadelli V., Longobardi A., Finoia M.G., Marino G. (2015). Feeding hatchery-reared dusky grouper Epinephelus marginatus juveniles on live prey: implications for restocking. Environ. Biol. Fish., 98: 1757–1766. Search in Google Scholar

Fazio F. (2019). Fish hematology analysis as an important tool of aquaculture: a review. Aquaculture, 500: 237–242. Search in Google Scholar

Folmar L.C. (1993). Effects of chemical contaminants on blood chemistry of teleost fish: a bibliography and synopsis of selected effects. Environ. Toxicol. Chem., 12: 337–375. Search in Google Scholar

From J., Rasmussen G. (1984). A growth model, gastric evaluation and body composition in rainbow trout, Salmo gairdneri Richardson,1836. Dana, 3: 61–139. Search in Google Scholar

Havixbeck J.J., Barreda D.R. (2015). Neutrophil development, migration and function in teleost fish. Biology, 4: 715–734. Search in Google Scholar

HELCOM (2011). Salmon and sea trout populations and rivers in the Baltic Sea. HELCOM assessment of salmon (Salmo salar) and sea trout (Salmo trutta) populations and habitats in rivers flowing to the Baltic Sea. Balt. Sea Environ. Proc. No. 126A. https://helcom.fi/media/publications/BSEP126A.pdf (accessed on 11 July 2022). Search in Google Scholar

HELCOM (2021). Sea trout populations and rivers in the Baltic Sea. Sea trout (Salmo trutta) river and stock status assessment report of the Interreg RETROUT project – Baltic Marine Environment Protection Commission – Helsinki Commission. https://helcom.fi/media/publications/Sea-trout-populations-and-rivers-in-the-Baltic-Sea.pdf (accessed on 11 July 2022). Search in Google Scholar

Hermelink B., Wuertz S., Trubiroha A., Rennert B., Kloas W., Schulz C. (2011). Influence of temperature on puberty and maturation of pikeperch, Sander lucioperca. Gen. Comp. Endocrinol., 172: 282–292. Search in Google Scholar

Hoffmann L., Rawski M., Nogales-Mérida S., Kołodziejski P., Pruszyńska-Oszmałek E., Mazurkiewicz J. (2021). Mealworm meal use in sea trout (Salmo trutta m. trutta, L.) fingerling diets: effects on growth performance, histomorphology of the gastrointestinal tract and blood parameters. Aquac. Nutr., 27: 1512–1528. Search in Google Scholar

Hyvärinen P., Rodewald P. (2013). Enriched rearing improves survival of hatchery-reared Atlantic salmon smolts during migration in the River Tornionjoki. Can. J. Fish. Aquat. Sci., 70: 1386–1395. Search in Google Scholar

Irvine J.R., O’Neill M., Godbout L., Schnute J. (2013). Effects of smolt release timing and size on the survival of hatchery-origin coho salmon in the Strait of Georgia. Prog. Oceanogr., 115: 111–118. Search in Google Scholar

Jobling M. (1994). Fish bioenergetics. Chapman and Hall, London, UK, 309 pp. Search in Google Scholar

Krepski T., Czerniawski R. (2019). Can we teach a fish how to eat? The impact of bottom and surface feeding on survival and growth of hatchery-reared sea trout parr (Salmo trutta trutta L.) in the wild. PLoS ONE, 14(9): e0222182. Search in Google Scholar

Lepage O., Øverli O., Petersson E., Järvi T., Winberg S. (2000). Differential stress coping in wild and domesticated sea trout. Brain Behav. Evol., 56: 259–268. Search in Google Scholar

Magnadóttir B. (1998). Comparison of immunoglobulin (IgM) from four fish species. Ice. Agric. Sci., 12: 47–59. Search in Google Scholar

Magnadóttir B. (2006). Innate immunity of fish (overview). Fish Shell-fish Immunol., 20: 137–151. Search in Google Scholar

Manassa R.P., McCormick M.I. (2012). Social learning and acquired recognition of a predator by a marine fish. Anim. Cogn., 15: 559–565. Search in Google Scholar

Martínez-Porchas M., Martínez-Córdova L.R., Ramos-Enriquez R. (2009). Cortisol and glucose: reliable indicators of fish stress? Pan-Am. J. Aquat. Sci., 4: 158–178. Search in Google Scholar

McNeil W.J. (1991). Expansion of cultured Pacific salmon into marine ecosystems. Aquaculture, 98: 173–183. Search in Google Scholar

Minaz M., Er A., Ak K., Nane İ.D., İpek Z.Z., Kurtoğlu İ.Z., Kayış Ş. (2022). Short-term exposure to Bisphenol A (BPA) as a plastic precursor: hematological and behavioral effects on Oncorhynchus mykiss and Vimba vimba. Water Air Soil Pollut., 233: 122. Search in Google Scholar

Nikoskelainen S., Bylund G., Lilius E.-M. (2004). Effect of environmental temperature on rainbow trout (Oncorhynchus mykiss) innate immunity. Develop. Comp. Immunol., 28: 581–592. Search in Google Scholar

Olla B.L., Davis M.W., Ryer C.H. (1998). Understanding how the hatchery environment represses or promotes the development of behavioral survival skills. Bull. Mar. Sci., 62: 531–550. Search in Google Scholar

Pickering A.D., Pottinger T.G. (1989). Stress responses and disease resistance in salmonid fish: effect of chronic elevation of plasma cortisol. Fish Physiol. Biochem., 7: 253–258. Search in Google Scholar

Pottinger T.G., Moran T.A. (1993). Differences in plasma cortisol and cortisone dynamics during stress in two strains of rainbow trout (Oncorhynchus mykiss). J. Fish Biol., 43: 121–130. Search in Google Scholar

Roberts L.J., Taylor J., Garcia De Leaniz C. (2011). Environmental enrichment reduces maladaptive risk-taking behavior in salmon reared for conservation. Biol. Conserv., 144: 1972–1979. Search in Google Scholar

Rodewald P., Hyvärinen P., Hirvonen H. (2011). Wild origin and enriched environment promote foraging rate and learning to for- age on natural prey of captive reared Atlantic salmon parr. Ecol. Freshwat. Fish, 20: 569–579. Search in Google Scholar

Rodriguez M.V., Zanuzzo F.S., Koch J.F.A., deOliveira C.A.E., Sima P., Vetvicka V. (2020). Development of fish immunity and the role of β-glucan in immune responses. Molecules, 25: 5378. Search in Google Scholar

Rombout J.H., Huttenhuis H.B., Picchietti S., Scapiglaiti G. (2005). Phylogeny and ontogeny of fish leucocytes. Fish Shellfish Immunol., 19: 441–455. Search in Google Scholar

Sadoul B., Vijayan M.M. (2016). Stress and growth. In: Fish physiology – Biology of stress in fish, Schreck C.B., Tort L., Farrell A.P., Brauner C.J. (eds). Academic Press, San Diego, USA, pp. 167–205. Search in Google Scholar

Saikkonen A., Kekäläinen J., Piironen J. (2011). Rapid growth of Atlantic salmon juveniles in captivity may indicate poor performance in nature. Biol. Conserv., 144: 2320–2327. Search in Google Scholar

Sala-Rabanal M., Sánchez J., Ibarz A., Fernández-Borràs J., Blasco J., Gallardo M.A. (2003). Effects of low temperatures and fasting on hematology and plasma composition of gilthead sea bream (Sparus aurata). Fish Physiol. Biochem., 29: 105–115. Search in Google Scholar

Santulli-Marott S., Gervais A., Fisher J., Strake B., Ogden C.A., Riveley Ch., Giles-Komar J. (2015). Discovering molecules that regulate efferocytosis using primary human macrophages and high content imaging. PLoS ONE, 10(12): e0145078. Search in Google Scholar

Sopinka N.M., Donaldson M.R., O’Connor C.M., Suski C.D., Cooke S.J. (2016). Stress indicators in fish. In: Biology of stress in fish, Schreck C.B., Tort L., Farrell A.P., Brauner C.J. (eds). Academic Press, San Diego, USA, pp. 405–462. Search in Google Scholar

Van Puijenbroek P.J.T.M., Buijse A.D., Kraak M.H.S., Verdonschot P.F.M. (2018). Species and river specific effects of river fragmentation on European anadromous fish species. River Res. Applic., 35: 68–77. Search in Google Scholar

Witeska M., Kondera E., Ługowska K., Bojarski B. (2021). Hematological methods in fish – not only for beginners. Aquaculture, 547: 737498. Search in Google Scholar

Yang H., Leng X., Du H., Luo J., Wu J., Wei Q. (2020). Adjusting the prerelease gut microbial community by diet training to improve the postrelease fitness of captive-bred Acipenser dabryanus. Front. Microbiol., 11: 488. Search in Google Scholar

Zakęś Z., Jankowska B., Jarmołowicz S., Żmijewski T., Partyka K., Demska-Zakęś K. (2010). Effects of different dietary fatty acids profiles on the growth performance and body composition of juvenile tench (Tinca tinca (L.)). Rev. Fish Biol. Fish., 20: 389–401. Search in Google Scholar

Zhu T., Corraze G., Plagnes-Juan E., Skiba-Cassy S. (2020). Cholesterol metabolism regulation mediated by SREBP-2, LXRα and miR-32a in rainbow trout (Oncorhynchus mykiss) both in vivo and in vitro. PloS One, 15(2): e0223813. Search in Google Scholar

Polecane artykuły z Trend MD