Zacytuj

Abd El-Hack M.E., El-Saadony M.T., Shafi M.E., Zabermawi N.M., Arif M., Batiha G.E., Khafaga A.F., Abd El-Hakim Y.M., Al-Sagheer A.A. (2020). Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int. J. Biol. Macromol., 164: 2726–2744. Search in Google Scholar

Alfaris A.A., Shsker B.A.A, Al-Luaibai A.N.A.S. (2017). Hormonal delivery pgf 2a with chitosan polymer to treatment infertility cow. Life Sci. Arch., 3: 1030–1037. Search in Google Scholar

Bancroft J.D., Stevens A. (1990). Theory and practice of histology techniques. 3rd ed. Churchill Livingstone, Edinburgh, 740 pp. Search in Google Scholar

Bhat I.A., Ahmad I., Mir I.N., Bhat R.A.H., Gireesh-Babu P., Goswami M., Sundaray J., Sharma R. (2019). Chitosan-eurycomanone nanoformulation acts on steroidogenesis pathway genes to increase the reproduction rate in fish. J. Steroid Biochem. Mol. Biol., 185: 237–247. Search in Google Scholar

Cheng L., Wang L., Xu Q., Huang L., Zhou D., Li Z., Li S., Du Y., Yin H. (2015). Chitooligosaccharide supplementation improves the reproductive performance and milk composition of sows. Livest. Sci., 174: 74–81. Search in Google Scholar

De Paiva P.G., De Jesus E.F., Del Valle T.A., de Almeida G.F., Costa A.G.B., Consentini C.E.C., Zanferari F., Takiya C.S., da Silva Bueno I.C., Rennó F.P. (2016). Effects of chitosan on ruminal fermentation, nutrient digestibility, and milk yield and composition of dairy cows. Anim. Prod. Sci., 57: 301–307. Search in Google Scholar

Del Valle T.A., de Paiva P.G., de Jesus E.F., de Almeida G.F., Zanferari F., Costa A.G., Bueno I.C., Rennó F.P. (2017). Dietary chitosan improves nitrogen use and feed conversion in diets for mid-lactation dairy cows. Livest. Sci., 201: 22–29. Search in Google Scholar

Duan X., Tian G., Chen D., Yang J., Zhang L., Li B., Huang L., Zhang D., Zheng P., Mao X. (2020). Effects of diet chitosan oligosaccharide on performance and immune response of sows and their offspring. Livest. Sci., 239: 104114. Search in Google Scholar

Duncan D.B. (1955). Multiple range and multiple f tests. Biometrics, 11: 1–42. Search in Google Scholar

Ewuola E., Lawanson A., Adeyemi A. (2014). An improvised artificial vagina for rabbit semen collection and the characteristics of the extended rabbit semen as panacea for artificial insemination. Trop. Anim. Prod. Invest, 17: 19–24. Search in Google Scholar

Hamady G., Farroh K. (2020). Effects of adding nano-chitosan on productive performance of laying hens. Egyptian J. Nutr. Feeds, 23: 321–336. Search in Google Scholar

Hassanein E.M., Hashem N.M., El-Azrak K.E.-D.M., Gonzalez-Bulnes A., Hassan G.A., Salem M.H. (2021). Efficiency of GnRH–loaded chitosan nanoparticles for inducing LH secretion and fertile ovulations in protocols for artificial insemination in rabbit does. Animals, 11: 440. Search in Google Scholar

Hernandez-Patlan D., Solis-Cruz B., Hargis B.M., Tellez G. (2018). Chitoneous materials for control of foodborne pathogens and mycotoxins in poultry. In: Chitin-Chitosan – Myriad functionalities in science and technology, Dongre R. (ed.). IntechOpen, pp. 261–282. Search in Google Scholar

Ho T., Jahan M., Haque Z., Kracht S., Wynn P.C., Du Y., Gunn A., Wang B. (2020). Maternal chitosan oligosaccharide intervention optimizes the production performance and health status of gilts and their offspring. Anim. Nutr., 6: 134–142. Search in Google Scholar

Huang Y., Ye H., Zhu F., Hu C., Zheng Y. (2021). The role of chitosan oligosaccharides in regulating the function of ovarian reproductive stem cells and protecting against premature ovarian failure. Reprod. Biol. Endocrinol., 19: 14. Search in Google Scholar

Irawan D.D., Rozifa A.W., Purwitasari A.A., Kalsum U., Ratnawati R., Anita K.W. (2020). Effect of chitosan on the reproductive system of female rats (Rattus norvegicus) exposed to lead acetate. Indian J. Public Health Res. Develop., 11. Search in Google Scholar

Jang M.K., Kong B.G., Jeong Y.I., Lee C.H., Nah J.W. (2004). Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. J. Polym. Sci. Part A: Polym. Chem., 42: 3423–3432. Search in Google Scholar

Je J.Y., Cho Y.S., Kim S.K. (2006). Characterization of (aminoethyl) chitin/DNA nanoparticle for gene delivery. Biomacromolecules, 7: 3448–3451. Search in Google Scholar

Kamal M., Sindi R.A., El-Azzazi F.E., Kishk W.H., Khalil H.A., Abdel-Khalek A.M., Abd El-Hack M.E. (2022). Sexual behavior response, testicular development and semen quality of New Zealand White rabbit bucks as influenced by dietary chitosan. Reprod. Domest. Anim., https://doi.org/10.1111/rda.14300 Search in Google Scholar

Khalil H., Yaseen M., Hamdy A. (2015). Behavioral activities, physiological body reactions, hematological parameters and hormonal profiles for bucks of New Zealand White and Baladi red rabbits exposed to short term of high temperature. Asian J. Poult. Sci., 9: 191–202. Search in Google Scholar

Kishk W., Khalil H., Hassanein A., Ayoub M. (2006). Physiological, reproductive and productive traits of New Zealand White rabbits doe as affected by natural mating time. Egypt. J. Rabbit Sci., 16: 223–232. Search in Google Scholar

Kohiruimaki M., Mukai M., Ohtsuka H., Miura H., Kawamura S. (2013). Effect of intrauterine infusion of chitosan acetic acid solution on conception rate after synchronization of estrus or ovulation in dairy cows with anestrus. J. Japan Vet. Med. Assoc., 66: 385–389. Search in Google Scholar

Lukefahr S., Hohenboken W., Cheeke P., Patton N. (1983). Characterization of straightbred and crossbred rabbits for milk production and associative traits. J. Anim. Sci., 57: 1100–1107. Search in Google Scholar

Lukefahr S.D., Cheeke P.R. (1991). Rabbit project development strategies in subsistence farming systems. World Anim. Rev., 68: 60–70. Search in Google Scholar

Mair K., Sedlak C., Käser T., Pasternak A., Levast B., Gerner W., Saalmüller A., Summerfield A., Gerdts V., Wilson H. (2014). The porcine innate immune system: An update. Develop. Compar. Immunol., 45: 321–343. Search in Google Scholar

Mohamed S.I., Shehata S.A., Bassiony S.M., Mahgoub S.A., Abd El-Hack M.E. (2022). Does the use of different types of probiotics possess detoxification properties against aflatoxins contamination in rabbit diets?. Probiot. Antimicrob. Prot., 1–11. Search in Google Scholar

Nasr A.M., Abol Ela S.E.D., Ismail I.E., Aldhahrani A., Soliman M.M., Alotaibi S.S., Abd El-Hack M.E. (2022). A comparative study among dietary supplementations of antibiotic, grape seed and chamomile oils on growth performance and carcass properties of growing rabbits. Saudi J. Biol. Sci., 29: 2483–2488. Search in Google Scholar

NRC (1991). Microlivestock: Little-known small animals with a promising economic future. National Academies Press, Washington D.C., Elsevier, pp. 179–192. Search in Google Scholar

Okawa H., Wijayagunawardane M.M., Vos P.L., Yamato O., Taniguchi M., Takagi M. (2021). Effects of intrauterine infusion of a chitosan solution on recovery and subsequent reproductive performance of early postpartum dairy cows with endometritis: A pilot field trial. Animals, 11: 197. Search in Google Scholar

Osama E., Kishk W., Khalil H., Ayoub M. (2017). Impact of natural estrus induction methods on receptivity, conception rate and sexual hormonal levels in Baladi Red and New Zealand White rabbit does. Egyptian J. Anim. Prod., 54: 149–154. Search in Google Scholar

Shokryazdan P., Faseleh Jahromi M., Navidshad B., Liang J.B. (2017). Effects of prebiotics on immune system and cytokine expression. Med. Microbiol. Immunol., 206: 1–9. Search in Google Scholar

Sun T., Zhou D., Mao F., Zhu Y. (2007). Preparation of low-molecularweight carboxymethyl chitosan and their superoxide anion scavenging activity. Eur. Polym. J., 43: 652–656. Search in Google Scholar

Sun Z., Tang Z., Yin Y., Huang R., Li T., Tang S., Tan Z. (2009). Effect of dietary supplementation of galacto-mannan-oligosaccharides and chitosan on performance and serum immune parameters of 28-day weaned piglets challenged with pathogenic E. Coli. J. Appl. Anim. Res., 36: 207–211. Search in Google Scholar

Suthongsa S., Pichyangkura R., Kalandakanond-Thongsong S., Thongsong B. (2017). Effects of dietary levels of chito-oligosaccharide on ileal digestibility of nutrients, small intestinal morphology and crypt cell proliferation in weaned pigs. Livest. Sci., 198: 37–44. Search in Google Scholar

Swiatkiewicz S., Swiatkiewicz M., Arczewska-Wlosek A., Jozefiak D. (2015). Chitosan and its oligosaccharide derivatives (chito-oligo saccharides) as feed supplements in poultry and swine nutrition. J. Anim. Physiol. Anim. Nutr., 99: 1–12. Search in Google Scholar

Wan J., Yang K., Xu Q., Chen D., Yu B., Luo Y., He J. (2016). Dietary chitosan oligosaccharide supplementation improves foetal survival and reproductive performance in multiparous sows. RSC Adv., 6: 70715–70722. Search in Google Scholar

Wan J., Xu Q., He J. (2018). Maternal chitosan oligosaccharide supplementation during late gestation and lactation affects offspring growth. It. J. Anim. Sci., 17: 994–1000. Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine