Otwarty dostęp

Enrichment of chocolate byproducts and protected fats with zinc to partially replace corn in diets of early lactation Holstein cows


Zacytuj

AOAC (2005). The official method of analysis, 18th ed., Association of Officiating Analytical Chemists. AOAC International, Washington DC. Search in Google Scholar

Behan A.A., Loh T.C., Fakurazi S., Kaka U., Kaka A., Samsudin A.A. (2019). Effects of supplementation of rumen protected fats on rumen ecology and digestibility of nutrients in sheep. Animals, 9: 400. Search in Google Scholar

Broderick G.A., Luchini N.D., Reynal S.M., Varga G.A., Ishler V.A. (2008). Effect on production of replacing dietary starch with sucrose in lactating dairy cows. J. Dairy Sci., 91: 4801–4810. Search in Google Scholar

Campione A., Pauselli M., Natalello A., Valenti B., Pomente C., Avondo M., Luciano G., Caccamo M., Morbidini L. (2021). Inclusion of cocoa by-product in the diet of dairy sheep: Effect on the fatty acid profile of ruminal content and on the composition of milk and cheese. Animal, 15: 100243. Search in Google Scholar

Chilliard Y. (1993). Dietary fat and adipose tissue metabolism in ruminants, pigs, and rodents: a review. J. Dairy Sci., 76: 3897–3931. Search in Google Scholar

Chouinard P.Y., Girard V., Brisson G.J. (1998). Fatty acid profile and physical properties of milk fat from cows fed calcium salts of fatty acids with varying unsaturation. J. Dairy Sci., 81: 471–481. Search in Google Scholar

Dhiman T.R., Satter L.D., Pariza M.W., Galli M.P., Albright K., Tolosa M.X. (2000). Conjugated linoleic acid (CLA) content of milk from cows offered diets rich in linoleic and linolenic acid. J. Dairy Sci., 83: 1016–1027. Search in Google Scholar

Erickson P.S., Kalscheur K.F. (2019). Nutrition and feeding of dairy cattle. In: Animal agriculture: sustainability, challenges and innovations. Elsevier, pp. 157–180. Search in Google Scholar

Eryavuz A., Dehority B.A. (2009). Effects of supplemental zinc concentration on cellulose digestion and cellulolytic and total bacterial numbers in vitro. Anim. Feed Sci. Technol., 151: 175–183. Search in Google Scholar

Ferret A., Plaixats J., Caja G., Gasa J., Prió P. (1999). Using markers to estimate apparent dry matter digestibility, faecal output and dry matter intake in dairy ewes fed Italian ryegrass hay or alfalfa hay. Small Rumin. Res., 33: 145–152. Search in Google Scholar

Fredeen A.H. (1996). Considerations in the nutritional modification of milk composition. Anim. Feed Sci. Technol., 59: 185–197. Search in Google Scholar

Garnsworthy P.C. (1997). Fats in dairy cow diets. In: Recent advances in animal nutrition, Garnsworthy P.C., Cole D.J.A. (eds). University of Nottingham, Nottingham, UK, pp. 87–104. Search in Google Scholar

Ghoniem A., Atia S. (2020). Effect of addition protected fatty acids in ruminant rations on productive performance of Suffolk × Ossimi crossbred ewes during different production stages. Egypt. J. Nutr. Feeds, 23: 369–383. Search in Google Scholar

Griinari J.M., Corl B.A., Lacy S.H., Chouinard P.Y., Nurmela K., Bauman D.E. (2000). Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ9-desaturase. J. Nutr., 130: 2285–2291. Search in Google Scholar

Hammon H.M., Metges C.C., Junghans P., Becker F., Bellmann O., Schneider F., Nürnberg G., Dubreuil P., Lapierre H. (2008). Metabolic changes and net portal flux in dairy cows fed a ration containing rumen-protected fat as compared to a control diet. J. Dairy Sci., 91: 208–217. Search in Google Scholar

Hashem K.M., He F.J., Alderton S.A., Macgregor G.A. (2019). Crosssectional survey of the amount of sugar and energy in chocolate confectionery on sold in the UK in 1992 and 2017. Nutrients, 11: 1798. Search in Google Scholar

Hill G.M., Shannon M.C. (2019). Copper and zinc nutritional issues for agricultural animal production. Biol. Trace. Elem. Res., 188: 148–159. Search in Google Scholar

Hosten A.O. (1990). BUN and creatinine. In: Clinical methods: The history, physical, and laboratory examinations, Walker H.K., Hall W.D., Hurst J.W. (eds). Butterworths, Boston, MA, pp. 874–878. Search in Google Scholar

Ianni A., Innosa D., Martino C., Grotta L., Bennato F., Martino G. (2019). Zinc supplementation of Friesian cows: Effect on chemical-nutritional composition and aromatic profile of dairy products. J. Dairy Sci., 102: 2918–2927. Search in Google Scholar

Jackson P.G.G., Cockcroft P.D. (2007). Appendix 3: Laboratory reference values: Biochemistry. In: Clinical examination of farm animals. Blackwell Science Ltd., Oxford, UK, pp. 303–305. Search in Google Scholar

Jerry Kaneko J., Harvey J.J., Bruss M.L. (2008). Clinical biochemistry of domestic animals. Elsevier. Kholif A.E., Olafadehan O.A. (2022). Dietary strategies to enrich milk with healthy fatty acids – a review. Ann. Anim. Sci., 22: 523–536. Search in Google Scholar

Kholif A.E., Morsy T.A., Abd El Tawab A.M., Anele U.Y., Galyean M.L. (2016). Effect of supplementing diets of Anglo-Nubian goats with soybean and flaxseed oils on lactational performance. J. Agric. Food Chem., 64: 6163–6170. Search in Google Scholar

Kholif A.E., Morsy T.A., Abdo M.M. (2018). Crushed flaxseed versus flaxseed oil in the diets of Nubian goats: Effect on feed intake, digestion, ruminal fermentation, blood chemistry, milk production, milk composition and milk fatty acid profile. Anim. Feed Sci. Technol., 244: 66–75. Search in Google Scholar

Kumar M. (2017). By pass fat in animal feeding – a review. J. Entomol. Zool. Stud., 5: 2251–2255. Search in Google Scholar

Mandal G.P., Dass R.S., Isore D.P., Garg A.K., Ram G.C. (2007). Effect of zinc supplementation from two sources on growth, nutrient utilization and immune response in male crossbred cattle (Bos indicus×Bos taurus) bulls. Anim. Feed Sci. Technol., 138: 1–12. Search in Google Scholar

Mane S.H., Mandakmale S.D., Nimbalkar C.A., Kankhare D.H., Lokhande A.T. (2017). Economics of feeding protected protein and protected fat on crossbred cattle. Indian J. Anim. Res., 51: 1080–1085. Search in Google Scholar

Manriquez D., Chen L., Melendez P., Pinedo P. (2019). The effect of an organic rumen-protected fat supplement on performance, metabolic status, and health of dairy cows. BMC Vet. Res. 15: 1–14. Search in Google Scholar

Miner J.L., Petersen M.K., Havstad K.M., McInerney M.J., Bellows R.A. (1990). The effects of ruminal escape protein or fat on nutritional status of pregnant winter-grazing beef cows. J. Anim. Sci., 68: 1743–1750. Search in Google Scholar

Molina B.S. de L., Alcalde C.R., Hygino B., Santos S.M. de A., Gomes L.C., dos Santos G.T. (2015). Inclusion of protected fat in diets on the milk production and composition of Saanen goats. Ciencia e Agrotecnologia, 39: 164–172. Search in Google Scholar

Morsy T.A., Kholif S.M., Kholif A.E., Matloup O.H., Salem A.Z.M., Abu Elella A. (2015). Influence of sunflower whole seeds or oil on ruminal fermentation, milk production, composition, and fatty acid profile in lactating goats. Asian-Australas. J. Anim. Sci., 28: 1116–1122. Search in Google Scholar

Morsy T.A., Kholif A.E., Matloup O.H., Elella A.A., Anele U.Y., Caton J.S. (2018). Mustard and cumin seeds improve feed utilisation, milk production and milk fatty acids of Damascus goats. J. Dairy Res., 85: 142–151. Search in Google Scholar

Naik P.K. (2013). Bypass fat in dairy ration-a review. Anim. Nutr. Feed Technol., 13: 147–163. Search in Google Scholar

Ngidi M.E., Loerch S.C., Fluharty F.L., Palmquist D.L. (1990). Effects of calcium soaps of long-chain fatty acids on feedlot performance, carcass characteristics and ruminal metabolism of steers. J. Anim. Sci., 68: 2555–2565. Search in Google Scholar

NRC (2001). Nutrient Requirements of Dairy Cattle. Search in Google Scholar

Oba M. (2011). Review: Effects of feeding sugars on productivity of lactating dairy cows. Can. J. Anim. Sci., 91: 37–46. Search in Google Scholar

Palmquist D.L., Jenkins T.C. (2017). A 100-year review: Fat feeding of dairy cows. J. Dairy Sci., 100: 10061–10077. Search in Google Scholar

Pramono A., Handayanta E., Widayati D.T., Putro P.P., Kustono (2017). Dietary protected feed supplement to increase milk production and quality of dairy cows. IOP Conf. Ser. Mater. Sci. Eng., 193: 012034. Search in Google Scholar

Sales J., Janssens G.P.J. (2003). Acid-insoluble ash as a marker in digestibility studies: a review. J. Anim. Feed Sci., 12: 383–401. Search in Google Scholar

Sallam S.M.A., Kholif A.E., Kadoom M., Nour El-Din A., Attia M., Matloup O., Olafadehan O. (2021). Two levels of palmitic acidenriched fat supplement affect lactational performance of Holstein cows and feed utilization of Barki sheep. Agric. Conspec. Sci., 86: 153–163. Search in Google Scholar

Schroeder G.F., Gagliostro G.A., Bargo F., Delahoy J.E., Muller L.D. (2004). Effects of fat supplementation on milk production and composition by dairy cows on pasture: a review. Livest. Prod. Sci., 86: 1–18. Search in Google Scholar

Shaeffer G.L., Lloyd K.E., Spears J.W. (2017). Bioavailability of zinc hydroxychloride relative to zinc sulfate in growing cattle fed a corn-cottonseed hull-based diet. Anim. Feed Sci. Technol., 232: 1–5. Search in Google Scholar

Singh M., Roy A.K., Sharma S. (2015). Augmentation of milk production by supplementing bypass fat in dairy animals. Asian J. Anim. Vet. Adv., 10: 476–488. Search in Google Scholar

Sjaunja L.O., Baevre L., Junkkarinen L., Pedersen J., Setala J. (1991). A Nordic proposal for an energy corrected milk (ECM) formula: performance recording of animals. State of the art. EAAP Publications, 50: 156–157. Search in Google Scholar

Sniffen C.J., O’Connor J.D., Van Soest P.J., Fox D.G., Russell J.B. (1992). A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci., 70: 3562–3577. Search in Google Scholar

Titi H. (2011). Effects of varying levels of protected fat on performance of Shami goats during early and mid lactation. Turk. J. Vet. Anim. Sci., 35: 67–74. Search in Google Scholar

Tyrrell H.F., Reid J.T. (1965). Prediction of the energy value of cow’s milk. J. Dairy Sci., 48: 1215–1223. Search in Google Scholar

Van Soest P.J., Robertson J.B., Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583–3597. Search in Google Scholar

Wang C., Xu Y.Z., Han L., Liu Q., Guo G., Huo W.J., Zhang J., Chen L., Zhang Y.L., Pei C.X., Zhang S.L. (2021). Effects of zinc sulfate and coated zinc sulfate on lactation performance, nutrient digestion and rumen fermentation in Holstein dairy cows. Livest. Sci., 251: 104673. Search in Google Scholar

Webb S., Bartos J., Boles R., Hasty E., Thuotte E., Thiex N.J. (2014). Simultaneous determination of arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in fertilizers by microwave acid digestion and inductively coupled plasma-optical emission spectrometry detection: single-laboratory validation of a modification and extension of AOAC 2006.03. J. AOAC Int., 97: 700–711. Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine