Otwarty dostęp

Applications of antimicrobial peptides (AMPs) as an alternative to antibiotic use in aquaculture – A mini-review


Zacytuj

Abdel-Latif H.M.R., Khafaga A.F. (2020). Natural co-infection of cultured Nile tilapia Oreochromis niloticus with Aeromonas hydrophila and Gyrodactylus cichlidarum experiencing high mortality during summer. Aquacult. Res., 51: 1880–1892. Search in Google Scholar

Abdel-Latif H.M.R., Dawood M.A.O., Menanteau-Ledouble S., El-Matbouli M. (2020). The nature and consequences of co-infections in tilapia: A review. J. Fish Dis., 43: 651–664. Search in Google Scholar

Abdel-Latif H.M.R., El-Ashram S., Yilmaz S., Naiel M.A.E., Abdul Kari Z., Hamid N.K.A., Dawood M.A.O., Nowosad J., Kucharczyk D. (2022 a). The effectiveness of Arthrospira platensis and microalgae in relieving stressful conditions affecting finfish and shellfish species: An overview. Aquacult. Rep., 24: 101135. Search in Google Scholar

Abdel-Latif H.M.R., Yilmaz E., Dawood M.A.O., Ringø E., Ahmadifar E., Yilmaz S. (2022 b). Shrimp vibriosis and possible control measures using probiotics, postbiotics, prebiotics, and synbiotics: A review. Aquaculture, 551: 737951. Search in Google Scholar

Abdel-Latif H.M.R., Dawood M.A.O., Alagawany M., Faggio C., Nowosad J., Kucharczyk D. (2022 c). Health benefits and potential applications of fucoidan (FCD) extracted from brown seaweeds in aquaculture: An updated review. Fish Shellfish Immunol., 122: 115–130. Search in Google Scholar

Abdel-Tawwab M., Khalil R.H., Metwally A.A., Shakweer M.S., Khallaf M.A., Abdel-Latif H.M.R. (2020). Effects of black soldier fly (Hermetia illucens L.) larvae meal on growth performance, organs-somatic indices, body composition, and hemato-biochemical variables of European sea bass, Dicentrarchus labrax. Aquaculture, 522: 735136. Search in Google Scholar

Acosta J., Carpio Y., Valdés I., Velázquez J., Zamora Y., Morales R., Rodríguez E., Estrada M.P. (2014). Co-administration of tilapia alpha-helical antimicrobial peptides with subunit antigens boost immunogenicity in mice and tilapia (Oreochromis niloticus). Vaccine, 32: 223–229. Search in Google Scholar

Assefa A., Abunna F. (2018). Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish. Vet. Med. Int., 2018: 5432497. Search in Google Scholar

Austin B., Austin D.A. (2007). Bacterial fish pathogens: disease of farmed and wild fish. Vol. 26. Springer Cham. Search in Google Scholar

Bae J.S., Jung J.M., An C.M., Kim J.W., Hwang S.D., Kwon M.G., Park M.A., Kim M.C., Park C.I. (2016). Piscidin: Antimicrobial peptide of rock bream, Oplegnathus fasciatus. Fish Shellfish Immunol., 51: 136–142. Search in Google Scholar

Bergsson G., Agerberth B., Jörnvall H., Gudmundsson G.H. (2005). Isolation and identification of antimicrobial components from the epidermal mucus of Atlantic cod (Gadus morhua). FEBS J., 272: 4960–4969. Search in Google Scholar

Brockton V., Smith V.J. (2008). Crustin expression following bacterial injection and temperature change in the shore crab, Carcinus maenas. Dev. Comp. Immunol., 32: 1027–1033. Search in Google Scholar

Brogden K.A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Rev. Microbiol., 3: 238–250. Search in Google Scholar

Buonocore F., Randelli E., Casani D., Picchietti S., Belardinelli M.C., De Pascale D., Santi C.D., Scapigliati G. (2012). A piscidin-like antimicrobial peptide from the icefish Chionodraco hamatus (Perciformes: Channichthyidae): Molecular characterization, localization and bactericidal activity. Fish Shellfish Immunol., 33: 1183–1191. Search in Google Scholar

Büyükkiraz M.E., Kesmen Z. (2022). Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. J. Appl. Microbiol., 132: 1573–1596. Search in Google Scholar

Cederlund A., Gudmundsson G.H., Agerberth B. (2011). Antimicrobial peptides important in innate immunity. FEBS J., 278: 3942–3951. Search in Google Scholar

Chang C.I., Zhang Y.A., Zou J., Nie P., Secombes C.J. (2006). Two cathelicidin genes are present in both rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Antimicrob. Agents Chemother., 50: 185–195. Search in Google Scholar

Charlet M., Chernysh S., Philippe H., Hetru C., Hoffmann J.A., Bulet P. (1996). Innate immunity: isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J. Biol. Chem., 271: 21808–21813. Search in Google Scholar

Chinchar V.G., Bryan L., Silphadaung U., Noga E., Wade D., Rollins S.L. (2004). Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virology, 323: 268–275. Search in Google Scholar

Cho Y.S., Lee S.Y., Kim K.H., Kim S.K., Kim D.S., Nam Y.K. (2009). Gene structure and differential modulation of multiple rockbream (Oplegnathus fasciatus) hepcidin isoforms resulting from different biological stimulations. Dev. Comp. Immunol., 33: 46–58. Search in Google Scholar

Colorni A., Ullal A., Heinisch G., Noga E.J. (2008). Activity of the antimicrobial polypeptide piscidin 2 against fish ectoparasites. J. Fish Dis., 31: 423–432. Search in Google Scholar

D’Este F., Benincasa M., Cannone G., Furlan M., Scarsini M., Volpatti D., Gennaro R., Tossi A., Skerlavaj B., Scocchi M. (2016). Antimicrobial and host cell-directed activities of Gly/Ser-rich peptides from salmonid cathelicidins. Fish Shellfish Immunol., 59: 456–468. Search in Google Scholar

Destoumieux D., Munoz M., Bulet P., Bachère E. (2000). Penaeidins, a family of antimicrobial peptides from penaeid shrimp (Crustacea, Decapoda). Cell. Mol. Life Sci., 57: 1260–1271. Search in Google Scholar

Domeneghetti S., Franzoi M., Damiano N., Norante R., El Halfawy M.N., Mammi S., Marin O., Bellanda M., Venier P. (2015). Structural and antimicrobial features of peptides related to myticin C, a special defense molecule from the Mediterranean mussel Mytilus galloprovincialis. J. Agric. Food Chem., 63: 9251–9259. Search in Google Scholar

Douglas S.E., Gallant J.W., Gong Z., Hew C. (2001). Cloning and developmental expression of a family of pleurocidin-like antimicrobial peptides from winter flounder, Pleuronectes americanus (Walbaum). Dev. Comp. Immunol., 25: 137–147. Search in Google Scholar

El-Saadony M.T., Alagawany M., Patra A.K., Kar I., Tiwari R., Dawood M.A.O., Dhama K., Abdel-Latif H.M.R. (2021). The functionality of probiotics in aquaculture: An overview. Fish Shellfish Immunol., 117: 36–52. Search in Google Scholar

El-Son M.A.M., Nofal M.I., Abdel-Latif H.M.R. (2021). Co-infection of Aeromonas hydrophila and Vibrio parahaemolyticus isolated from diseased farmed striped mullet (Mugil cephalus) in Manzala, Egypt – A case report. Aquaculture, 530: 735738. Search in Google Scholar

García-Valtanen P., Martinez-Lopez A., Ortega-Villaizan M., Perez L., Coll J.M., Estepa A. (2014). In addition to its antiviral and immunomodulatory properties, the zebrafish β-defensin 2 (zfBD2) is a potent viral DNA vaccine molecular adjuvant. Antiviral Res., 101: 136–147. Search in Google Scholar

Gui L., Zhang P., Zhang Q., Zhang J. (2016). Two hepcidins from spotted scat (Scatophagus argus) possess antibacterial and antiviral functions in vitro. Fish Shellfish Immunol., 50: 191–199. Search in Google Scholar

Guo M., Wei J., Huang X., Huang Y., Qin Q. (2012). Antiviral effects of β-defensin derived from orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol., 32: 828–838. Search in Google Scholar

Gyan W.R., Yang Q., Tan B., Jan S.S., Jiang L., Chi S., Dong X., Liu H., Shuang Z. (2020). Effects of antimicrobial peptides on growth, feed utilization, serum biochemical indices and disease resistance of juvenile shrimp, Litopenaeus vannamei. Aquacult. Res., 51: 1222–1231. Search in Google Scholar

Hancock R.E.W. (2001). Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infectious Dis., 1: 156–164. Search in Google Scholar

Hancock R.E.W., Lehrer R. (1998). Cationic peptides: a new source of antibiotics. Trends Biotechnol., 16: 82–88. Search in Google Scholar

Hancock R.E.W., Rozek A. (2002). Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol. Letters, 206: 143–149. Search in Google Scholar

Hansen I.K.Ø., Lövdahl T., Simonovic D., Hansen K.Ø., Andersen A.J.C., Devold H., Richard C.S.M., Andersen J.H., Haug T. (2020). Antimicrobial activity of small synthetic peptides based on the marine peptide turgencin A: Prediction of antimicrobial peptide sequences in a natural peptide and strategy for optimization of potency. Int. J. Mol. Sci., 21: 5460. Search in Google Scholar

Hu S.Y., Huang J.H., Huang W.T., Yeh Y.H., Chen M.H.C., Gong H.Y., Chiou T.T., Yang T.H., Chen T.T., Lu J.K., Wu J.L. (2006). Structure and function of antimicrobial peptide penaeidin-5 from the black tiger shrimp Penaeus monodon. Aquaculture, 260: 61–68. Search in Google Scholar

Huan Y., Kong Q., Mou H., Yi H. (2020). Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol., 11. Search in Google Scholar

Iijima N., Tanimoto N., Emoto Y., Morita Y., Uematsu K., Murakami T., Nakai T. (2003). Purification and characterization of three isoforms of chrysophsin, a novel antimicrobial peptide in the gills of the red sea bream, Chrysophrys major. Eur. J. Biochem., 270: 675–686. Search in Google Scholar

Jin J.Y., Zhou L., Wang Y., Li Z., Zhao J.G., Zhang Q.Y., Gui J.F. (2010). Antibacterial and antiviral roles of a fish β-defensin expressed both in pituitary and testis. Plos One, 5: e12883. Search in Google Scholar

Kim H., Jang J.H., Kim S.C., Cho J.H. (2020). Development of a novel hybrid antimicrobial peptide for targeted killing of Pseudomonas aeruginosa. Eur. J. Med. Chem., 185: 111814. Search in Google Scholar

Korzekwa K., Gomułka P., Nowosad J., Kucharczyk D.J., Targońska K., Czarkowski T.K., Żarski D., Horváth L., Müller T., Kujawa R., Łuczyński M.J., Łuczyńska J., Abdel-Latif H.M.R., Kucharczyk D. (2022). Bacterial survey of skin ulcers in Anguilla anguilla L. females during artificial maturation under controlled conditions. Aquacult. Rep., 25: 101259. Search in Google Scholar

Lauth X., Shike H., Burns J.C., Westerman M.E., Ostland V.E., Carlberg J.M., Olst J.C.V., Nizet V., Taylor S.W., Shimizu C., Bulet P. (2002). Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass. J. Biol. Chem., 277: 5030–5039. Search in Google Scholar

Lauth X., Babon J.J., Stannard J.A., Singh S., Nizet V., Carlberg J.M., Ostland V.E., Pennington M.W., Norton R.S., Westerman M.E. (2005). Bass hepcidin synthesis, solution structure, antimicrobial activities and synergism, and in vivo hepatic response to bacterial infections. J. Biol. Chem., 280: 9272–9282. Search in Google Scholar

Lee H.R., You D.g., Kim H.K., Sohn J.W., Kim M.J., Park J.K., Lee G.Y., Yoo Y.D. (2020). Romo1-derived antimicrobial peptide is a new antimicrobial agent against multidrug-resistant bacteria in a murine model of sepsis. mBio, 11: e03258–03219. Search in Google Scholar

Lee I.H., Cho Y., Lehrer R.I. (1997 a). Styelins, broad-spectrum antimicrobial peptides from the solitary tunicate, Styela clava. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol., 118: 515–521. Search in Google Scholar

Lee I.H., Zhao C., Cho Y., Harwig S.S.L., Cooper E.L., Lehrer R.I. (1997 b). Clavanins, α-helical antimicrobial peptides from tunicate hemocytes. FEBS Letters, 400: 158–162. Search in Google Scholar

Lei Y., Qiu R., Shen Y., Zhou Y., Cao Z., Sun Y. (2020). Molecular characterization and antibacterial immunity functional analysis of liver-expressed antimicrobial peptide 2 (LEAP-2) gene in golden pompano (Trachinotus ovatus). Fish Shellfish Immunol, 106: 833–843. Search in Google Scholar

Lieke T., Meinelt T., Hoseinifar S.H., Pan B., Straus D.L., Steinberg C.E.W. (2020). Sustainable aquaculture requires environmentalfriendly treatment strategies for fish diseases. Rev. Aquacult., 12: 943–965. Search in Google Scholar

Lu J., Zhang Y., Wu J., Wang J. (2022). Intervention of antimicrobial peptide usage on antimicrobial resistance in aquaculture. J. Hazardous Mat., 427: 128154. Lutkenhaus J. (1990). Regulation of cell division in E. coli. Trends Genet., 6: 22–25. Search in Google Scholar

Mardirossian M., Grzela R., Giglione C., Meinnel T., Gennaro R., Mergaert P., Scocchi M. (2014). The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem. Biol., 21: 1639–1647. Search in Google Scholar

Marggraf M.B., Panteleev P.V., Emelianova A.A., Sorokin M.I., Bolosov I.A., Buzdin A.A., Kuzmin D.V., Ovchinnikova T.V. (2018). Cytotoxic potential of the novel horseshoe crab peptide polyphemusin III. Marine Drugs, 16: 466. Search in Google Scholar

Mayer M.L., Easton D.M., Hancock R.E. (2010). Fine tuning host responses in the face of infection: emerging roles and clinical applications of host defence peptides. Antimicrobial peptides: discovery, design and novel therapeutic strategies. Adv. Mol. Cell. Microbiol., 195–220. Search in Google Scholar

Mitta G., Vandenbulcke F., Hubert F., Salzet M., Roch P. (2000). Involvement of mytilins in mussel antimicrobial defense. J. Biol. Chem., 275: 12954–12962. Search in Google Scholar

Muncaster S., Kraakman K., Gibbons O., Mensink K., Forlenza M., Jacobson G., Bird S. (2018). Antimicrobial peptides within the Yellowtail Kingfish (Seriola lalandi). Dev. Comp. Immunol., 80: 67–80. Search in Google Scholar

Naiel M.A.E., Ismael N.E., Abd El-Hameed S.A.A., Amer M.S. (2020). The antioxidative and immunity roles of chitosan nanoparticle and vitamin C-supplemented diets against imidacloprid toxicity on Oreochromis niloticus. Aquaculture, 523: 735219. Search in Google Scholar

Naiel M.A.E., Alagawany M., Patra A.K., El-Kholy A.I., Amer M.S., Abd El-Hack M.E. (2021 a). Beneficial impacts and health benefits of macroalgae phenolic molecules on fish production. Aquaculture, 534: 736186. Search in Google Scholar

Naiel M.A.E., Khames M.K., Abdel-Razek N., Gharib A.A., El-Tarabily K.A. (2021 b). The dietary administration of miswak leaf powder promotes performance, antioxidant, immune activity, and resistance against infectious diseases on Nile tilapia (Oreochromis niloticus). Aquacult. Rep., 20: 100707. Search in Google Scholar

Naiel M.A.E., Abdelghany M.F., Khames D.K., Abd El-hameed, S.A.A., Mansour E.M., El-Nadi A.S.M., Shoukry A.A. (2022 a). Administration of some probiotic strains in the rearing water enhances the water quality, performance, body chemical analysis, antioxidant and immune responses of Nile tilapia, Oreochromis niloticus. App. Water Sci., 12: 1–13. Search in Google Scholar

Naiel M.A.E., Gewida A.G., Merwad A.R.M., Abdel-Hamid E.A., Negm S.S., Alagawany M., Farag M.R. (2022 b). The effects of various organic fertilizers with or without adsorbents on the productivity, antioxidant status and immune responses of Nile tilapia raised in cement ponds. Aquaculture, 548: 737593. Search in Google Scholar

Nam B.H., Moon J.Y., Kim Y.O., Kong H.J., Kim W.J., Lee S.J., Kim K.K. (2010). Multiple β-defensin isoforms identified in early developmental stages of the teleost Paralichthys olivaceus. Fish Shellfish Immunol., 28: 267–274. Search in Google Scholar

Nawrot R., Barylski J., Nowicki G., Broniarczyk J., Buchwald W., Goździcka-Józefiak A. (2014). Plant antimicrobial peptides. Folia Microbiol., 59: 181–196. Search in Google Scholar

Nayab S., Aslam M.A., Rahman S.U., Sindhu Z.U.D., Sajid S., Zafar N., Razaq M., Kanawar R., Amanullah (2022). A review of antimicrobial peptides: its function, mode of action and therapeutic potential. Int. J. Pep. Res. Ther., 28: 46. Search in Google Scholar

Negm S.S., Ismael N.E., Ahmed A.I., Asely A.M.E., Naiel M.A.E. (2021). The efficiency of dietary Sargassum aquifolium on the performance, innate immune responses, antioxidant activity, and intestinal microbiota of Nile tilapia (Oreochromis niloticus) raised at high stocking density. J. Appl. Phycol., 33: 4067–4082. Search in Google Scholar

Nganso Y.O.D., Sidjui L.S., Amang A.G.A.N., Kahouo A.D., Abah K., Fomena H., Hamadou M. (2020). Identification of peptides in the leaves of Bauhinia rufescens Lam (Fabaceae) and evaluation of their antimicrobial activities against pathogens for aquaculture. Science, 8: 81–91. Search in Google Scholar

Noga E.J. (2010). Fish Disease: Diagnosis and Treatment: John Wiley & Sons. Search in Google Scholar

Noga E.J., Fan Z., Silphaduang U. (2002). Host site of activity and cytological effects of histone like proteins on the parasitic dinoflagellate Amyloodinium ocellatum. Dis. Aquatic Organisms, 52: 207–215. Search in Google Scholar

Oeemig J.S., Lynggaard C., Knudsen D.H., Hansen F.T., Nørgaard K.D., Schneider T., Vad B.S., Sandvang D.H., Neilsen L.A., Neve S., Kristensin H.H., Sahl H.G., Otzen D.E., Wimmer R. (2012). Eurocin, a new fungal defensin: structure, lipid binding, and its mode of action. J. Biol. Chem., 287: 42361–42372. Search in Google Scholar

Park C.B., Lee J.H., Park I.Y., Kim M.S., Kim S.C. (1997). A novel antimicrobial peptide from the loach, Misgurnus anguillicaudatus. FEBS Lett., 411: 173–178. Search in Google Scholar

Park I.Y., Park C.B., Kim M.S., Kim S.C. (1998). Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett., 437: 258–262. Search in Google Scholar

Park S.C., Park Y., Hahm K.S. (2011). The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. Int. J. Mol. Sci., 12: 5971–5992. Search in Google Scholar

Preena P.G., Swaminathan T.R., Kumar V.J.R., Singh I.S.B. (2020). Antimicrobial resistance in aquaculture: a crisis for concern. Biologia, 75: 1497–1517. Search in Google Scholar

Raheem N., Straus S.K. (2019). Mechanisms of action for antimicrobial peptides with antibacterial and antibiofilm functions. Front. Microbiol., 10: 2866. Search in Google Scholar

Ravichandran S., Kumaravel K., Rameshkumar G., Ajithkumar T. (2010). Antimicrobial peptides from the marine fishes. Res. J. Immunol., 3: 146–156. Search in Google Scholar

Reddy K.V.R., Yedery R.D., Aranha C. (2004). Antimicrobial peptides: premises and promises. Int. J. Antimicrob. Agents, 24: 536–547. Search in Google Scholar

Rima M., Rima M., Fajloun Z., Sabatier J.M., Bechinger B., Naas T. (2021). Antimicrobial peptides: a potent alternative to antibiotics. Antibiotics, 10: 1095. Search in Google Scholar

Robinette D., Wada S., Arroll T., Levy M.G., Miller W.L., Noga E.J. (1998). Antimicrobial activity in the skin of the channel catfish Ictalurus punctatus: characterization of broad-spectrum histone-like antimicrobial proteins. Cell. Mol. Life Sci., 54: 467–475. Search in Google Scholar

Roch P., Yang Y., Toubiana M., Aumelas A. (2008). NMR structure of mussel mytilin, and antiviral–antibacterial activities of derived synthetic peptides. Dev. Comp. Immunol., 32: 227–238. Search in Google Scholar

Rollins-Smith L.A. (2009). The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biophys. Acta Biomembr., 1788: 1593–1599. Search in Google Scholar

Ruangsri J., Salger S.A., Caipang C.M.A., Kiron V., Fernandes J.M.O. (2012). Differential expression and biological activity of two piscidin paralogues and a novel splice variant in Atlantic cod (Gadus morhua L.). Fish Shellfish Immunol., 32: 396–406. Search in Google Scholar

Saito T., Kawabata S.I., Shigenaga T., Takayenoki Y., Cho J., Nakajima H., Hirata M., Iwanaga S. (1995). A novel big defensin identified in horseshoe crab hemocytes: isolation, amino acid sequence, and antibacterial activity. J. Biochem., 117: 1131–1137. Search in Google Scholar

Semreen M.H., El-Gamal M.I., Abdin S., Alkhazraji H., Kamal L., Hammad S., El-Awady F., Waleed D., Kourbaj L. (2018). Recent updates of marine antimicrobial peptides. Saudi Pharm. J., 26: 396–409. Search in Google Scholar

Sengupta D., Leontiadou H., Mark A.E., Marrink S.J. (2008). Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim. Biophys. Acta-Biomembr., 1778: 2308–2317. Search in Google Scholar

Shan Z., Yang Y., Guan N., Xia X., Liu W. (2020). NKL-24: A novel antimicrobial peptide derived from zebrafish NK-lysin that inhibits bacterial growth and enhances resistance against Vibrio parahaemolyticus infection in Yesso scallop, Patinopecten yessoensis. Fish Shellfish Immunol., 106: 431–440. Search in Google Scholar

Sharma P., Kaur J., Sharma G., Kashyap P. (2022). Plant derived antimicrobial peptides: Mechanism of target, isolation techniques, sources and pharmaceutical applications. J. Food Biochem., 46: e14348. Search in Google Scholar

Silphaduang U., Colorni A., Noga E.J. (2006). Evidence for widespread distribution of piscidin antimicrobial peptides in teleost fish. Dis. Aquat. Org., 72: 241–252. Search in Google Scholar

Silva O.N., Fensterseifer I.C.M., Rodrigues E.A., Holanda H.H.S., Novaes N.R.F., Cunha J.P.A., Rezende T.M.B., Magalhães K.G., Moreno S.E., Jerônimo M.S., Bocca A.L., Franco O.L. (2015). Clavanin A improves outcome of complications from different bacterial infections. antimicrob. Agents Chemother., 59: 1620–1626. Search in Google Scholar

Sonthi M., Cantet F., Toubiana M., Trapani M.R., Parisi M.G., Cammarata, M., Roch, P. (2012). Gene expression specificity of the mussel antifungal mytimycin (MytM). Fish Shellfish Immunol., 32: 45–50. Search in Google Scholar

Steinstraesser L., Kraneburg U., Jacobsen F., Al-Benna S. (2011). Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology, 216: 322–333. Search in Google Scholar

Subbalakshmi C., Sitaram N. (1998). Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Letters, 160: 91–96. Search in Google Scholar

Subramanian S., Ross N.W., MacKinnon S.L. (2009). Myxinidin, a novel antimicrobial peptide from the epidermal mucus of hagfish, Myxine glutinosa L. Marine Biotechnol., 11: 748. Search in Google Scholar

Sung W.S., Lee J., Lee D.G. (2008). Fungicidal effect and the mode of action of piscidin 2 derived from hybrid striped bass. Biochem. Biophys. Res. Commun., 371: 551–555. Search in Google Scholar

Tassanakajon A., Rimphanitchayakit V., Visetnan S., Amparyup P., Somboonwiwat K., Charoensapsri W., Tang S. (2018). Shrimp humoral responses against pathogens: antimicrobial peptides and melanization. Dev. Comp. Immunol., 80: 81–93. Search in Google Scholar

Thackray-Penny D., Moir A. (2003). SigM, an extracytoplasmic function sigma factor of bacillus subtilis, is activated in response to cell wall antibiotics, ethanol, heat, acid, and superoxide stress. J. Bacteriol., 185: 3491–3498. Search in Google Scholar

Ullal A.J., Wayne L.R., Noga E.J. (2008). Antimicrobial peptides derived from hemoglobin are expressed in epithelium of channel catfish (Ictalurus punctatus, Rafinesque). Dev. Comp. Immunol., 32: 1301–1312. Search in Google Scholar

Umasuthan N., Mothishri M.S., Thulasitha W.S., Nam B.H., Lee J. (2016). Molecular, genomic, and expressional delineation of a piscidin from rock bream (Oplegnathus fasciatus) with evidence for the potent antimicrobial activities of Of-Pis1 peptide. Fish Shellfish Immunol., 48: 154–168. Search in Google Scholar

Valero Y., Saraiva-Fraga M., Costas B., Guardiola F.A. (2020). Antimicrobial peptides from fish: beyond the fight against pathogens. Rev. Aquacult., 12: 224–253. Search in Google Scholar

Vanhoye D., Bruston F., Nicolas P., Amiche M. (2003). Antimicrobial peptides from hylid and ranin frogs originated from a 150-million-year-old ancestral precursor with a conserved signal peptide but a hypermutable antimicrobial domain. Eur. J. Biochem., 270: 2068–2081. Search in Google Scholar

Vilcinskas A. (2013). Evolutionary plasticity of insect immunity. J. Insect Physiol., 59: 123–129. Search in Google Scholar

Wang K.J., Cai J.J., Cai L., Qu H.D., Yang M., Zhang M. (2009). Cloning and expression of a hepcidin gene from a marine fish (Pseudosciaena crocea) and the antimicrobial activity of its synthetic peptide. Peptides, 30: 638–646. Search in Google Scholar

Wang S., Zeng X., Yang Q., Qiao S. (2016). Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int. J. Mol. Sci., 17: 603. Search in Google Scholar

Woo P.T.K. (1992). Immunological responses of fish to parasitic organisms. Ann. Rev. Fish Dis., 2: 339–366. Search in Google Scholar

Xie Y., Wan H., Zeng X., Zhang Z., Wang Y. (2020). Characterization and antimicrobial evaluation of a new Spgly-AMP, glycine-rich antimicrobial peptide from the mud crab Scylla paramamosain. Fish Shellfish Immunol., 106: 384–392. Search in Google Scholar

Yang M., Wang K.J., Chen J.H., Qu H.D., Li S.J. (2007). Genomic organization and tissue-specific expression analysis of hepcidinlike genes from black porgy (Acanthopagrus schlegelii B.). Fish Shellfish Immunol., 23: 1060–1071. Search in Google Scholar

Yang M., Chen B., Cai J.J., Peng H., Ling C., Yuan J.J., Wang K.J. (2011). Molecular characterization of hepcidin AS-hepc2 and AShepc6 in black porgy (Acanthopagrus schlegelii): Expression pattern responded to bacterial challenge and in vitro antimicrobial activity. Comp. Biochem. Physiol. -B-Biochem. Mol. Biol., 158: 155–163. Search in Google Scholar

Yilmaz S., Yilmaz E., Dawood M.A.O., Ringø E., Ahmadifar E., Abdel-Latif H.M.R. (2022). Probiotics, prebiotics, and synbiotics used to control vibriosis in fish: A review. Aquaculture, 547: 737514. Search in Google Scholar

Yin Z.X., He W., Chen W.J., Yan J.H., Yang J.N., Chan S.M., He J.G. (2006). Cloning, expression and antimicrobial activity of an antimicrobial peptide, epinecidin-1, from the orange-spotted grouper, Epinephelus coioides. Aquaculture, 253: 204–211. Search in Google Scholar

Zahran E., Noga E.J. (2010). Evidence for synergism of the antimicrobial peptide piscidin 2 with antiparasitic and antioomycete drugs. J. Fish Dis., 33: 995–1003. Search in Google Scholar

Zhang M., Li M.F., Sun L. (2014). NKLP27: A teleost NK-lysin peptide that modulates immune response, induces degradation of bacterial DNA, and inhibits bacterial and viral infection. Plos One, 9: e106543. Search in Google Scholar

Zhao X., Wu H., Lu H., Li G., Huang Q. (2013). LAMP: A database linking antimicrobial peptides. Plos One, 8: e66557. Search in Google Scholar

Zhou J.G., Wei J.G., Xu D., Cui H.C., Yan Y., Ou-Yang, Z.L., Huanga X.H., Huang Y.H., Qin Q.W. (2011). Molecular cloning and characterization of two novel hepcidins from orange-spotted grouper, Epinephelus coioides. Fish Shellfish Immunol., 30: 559–568. Search in Google Scholar

Zhou Q.-J., Wang J., Liu M., Qiao Y., Hong W.S., Su Y.Q., Han K.H., Ke Q.Z., Zheng W.Q. (2016). Identification, expression and antibacterial activities of an antimicrobial peptide NK-lysin from a marine fish Larimichthys crocea. Fish Shellfish Immunol., 55: 195–202. Search in Google Scholar

Zhu S. (2008). Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSαβ defensins. Mol. Immunol., 45: 828–838. Search in Google Scholar

Zhuang Z.-r., Yang X.D., Huang X.-z., Gu H.-x., Wei H.Y., He Y.J., Deng L. (2017). Three new piscidins from orange-spotted grouper (Epinephelus coioides): Phylogeny, expression and functional characterization. Fish Shellfish Immunol., 66: 240–253. Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine