Zacytuj

Abd El-Hack M.E., Alagawany M., Arif M., Emam M., Saeed M., Arain M.A., Khan R.U. (2018). The uses of microbial phytase as a feed additive in poultry nutrition–a review. Annals Anim. Sci., 18: 639–658. Search in Google Scholar

Abd El-Hack M.E., Alagawany M., Farag M.R., Tiwari R., Karthik K., Dhama K. (2016). Nutritional, healthical and therapeutic efficacy of black cumin (Nigella sativa) in animals, poultry and humans. Int. J. Pharmacol, 12: 232–248. Search in Google Scholar

Abd El-Hack M.E., El-Saadony M.T., Shehata A.M., Arif M., Paswan V. K., Elbestawy A.R. (2021). Approaches to prevent and control Campylobacter spp. colonization in broiler chickens: a review. Environ. Sci. Poll. Res., 28: 4989–5004. Search in Google Scholar

Abd El-Hack M.E., Shafi M.E., Alghamdi W.Y., Abdelnour S.A., Shehata A.M., Ragni M. (2020). Black soldier fly (Hermetia illucens) meal as a promising feed ingredient for poultry: A comprehensive review. Agriculture, 10: 339. Search in Google Scholar

Abdel-Moneim A.M.E., Shehata A.M., Alzahrani S.O., Shafi M.E., Mesalam N.M., Taha A.E., Abd El-Hack M.E. (2020). The role of polyphenols in poultry nutrition. J. Anim. Physiol. Anim. Nutr., 104: 1851–1866. Search in Google Scholar

Alagawany M., Abd El-Hack M.E., El-Kholy M.S. (2016). Productive performance, egg quality, blood constituents, immune functions, and antioxidant parameters in laying hens fed diets with different levels of Yucca schidigera extract. Environ. Sci. Poll. Res., 23: 6774–6782. Search in Google Scholar

Alagawany M., Abd El-Hack M.E., Laudadio V., Tufarelli V. (2014). Effect of low-protein diets with crystalline amino acid supplementation on egg production, blood parameters and nitrogen balance in laying Japanese quails. Avian Biol. Res., 7: 235–243. Search in Google Scholar

Ameh T., Sayes S.M. (2019). The potential exposure and hazards of copper nanoparticles: a review. Environ. Toxicol. Pharmacol., 71: 103220. Search in Google Scholar

Blanco J., Lafuente D., Gómez M., García T., Domingo J.L., Sánchez, D.J. (2017). Polyvinyl pyrrolidone-coated silver nanoparticles in a human lung cancer cells: time- and dose-dependent influence over p53 and caspase-3 protein expression and epigenetic effects. Arch. Toxicol., 91: 651–666. Search in Google Scholar

Brown T.A., Lee J.W., Holian A., Porter V., Fredriksen H., Kim M., Cho Y.H. (2016). Alterations in DNA methylation corresponding with lung inflammation and as a biomarker for disease development after MWCNT exposure. Nanotoxicol., 10: 453–461. Search in Google Scholar

Brzóska K., Grądzka I., Kruszewski M. (2019). Silver, gold, and iron oxide nanoparticles alter miRNA expression but do not affect DNA methylation in HepG2 cells. Materials., 12: 1038. Search in Google Scholar

Choudhury S.R, Ordaz J., Lo C.L., Damayanti N.P., Zhou F., Irudayaraj J. (2017). Zinc oxide nanoparticles-induced reactive oxygen species promotes multimodal cyto- and epigenetic toxicity. Toxicol Sci., 156: 261–274. Search in Google Scholar

Chouke P.B., Potbhare A.K., Meshram N.P., Rai M.M., Dadure K.M., Chaudhary K., ... & Masram D.T. (2022). Bioinspired NiO nanospheres: Exploring in vitro toxicity using Bm-17 and L. rohita liver cells, DNA degradation, docking, and proposed vacuolization mechanism. ACS omega., 7: 6869–6884. Search in Google Scholar

Dusinska M., Tulinska J., El Yamani N., Kuricova M., Liskova A., Rollerova E., Rundén-Pran E., Smolkova B. (2017). Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: New strategies for toxicity testing? Food Chem. Toxicol., 109: 797–811. Search in Google Scholar

Emerce E., Ghosh M., Öner D., Duca R.C., Vanoirbeek J., Bekaert B., Hoet P.M., Godderis L. (2019). Carbon nanotube- and asbestos-induced DNA and RNA methylation changes in bronchial epithelial cells. Chem. Res. Toxicol., 32: 850–860. Search in Google Scholar

Eom W., Lee E., Lee S.H., Sung T.H., Clancy A.J., Lee W.J., Han T.H. (2021). Carbon nanotube-reduced graphene oxide fiber with high torsional strength from rheological hierarchy control. Nat Commun., 12: 396. Search in Google Scholar

Fenech M. (2008). Genome health nutrigenomics and nutrigenetics diagnosis and nutritional treatment of genome damage on an individual basis. Food Chem. Toxicol., 46: 1365–1370. Search in Google Scholar

Fernández-Bertólez N., Costa C., Brandão F., Kiliç G., Duarte J.A., Teixeira J.P., Pásaro E., Valdiglesias V., Laffon B. (2018). Toxicological assessment of silica-coated iron oxide nanoparticles in human astrocytes. Food Chem. Toxicol., 118: 13–23. Search in Google Scholar

Gado A.R., Ellakany H.F., Elbestawy A.R., Abd El-Hack M.E., Khafaga A.F., Taha A.E., Mahgoub S. A. (2019). Herbal medicine additives as powerful agents to control and prevent avian influenza virus in poultry – a review. Ann. Anim. Sci., 19: 905–935. Search in Google Scholar

Gao F., Ma N., Zhou H., Wang Q., Zhang H., Wang P., Hou H., Wen H., Li L. (2016). Zinc oxide nanoparticles-induced epigenetic change and G2/M arrest are associated with apoptosis in human epidermal keratinocytes. Int. J. Nanomed., 11: 3859–3874. Search in Google Scholar

Ghanghas P., Sharma M., Desai D., Raza K., Bhalla A., Kumar P., Narula D., Amin S., Sanyal S.N., Kaushal N. (2022). Selenium-based novel epigenetic regulators offer effective chemotherapeutic alternative with wider safety margins in experimental colorectal cancer. Biol. Trace Elem. Res., 200: 635–646. Search in Google Scholar

Gharpure S., Akash A., Ankamwar B. (2020). A Review on antimicrobial properties of metal nanoparticles. J. Nanosci. Nanotechnol., 20: 3303–3339. Search in Google Scholar

Ghosh M., Godderis L., Hoet P. (2022). Epigenetic mechanisms in understanding nanomaterial-induced toxicity. In: Nanotoxicology in Safety Assessment of Nanomaterials, Louro H., Silva M.J. (eds). Advances in Experimental Medicine and Biology, 1357, Springer, Cham. Search in Google Scholar

Ghosh M., Öner D., Duca R.C., Bekaert B., Vanoirbeek J., Godderis L., Hoet P.M. (2018). Single-walled and multi-walled carbon nanotubes induce sequence-specific epigenetic alterations in 16 HBE cells. Oncotarget., 9: 20351–20365. Search in Google Scholar

Ghosh M., Öner D., Poels K., Tabish A.M., Vlaanderen J., Pronk A., Kuijpers E., Lan Q., Vermeulen R., Bekaert B., Hoet P.H., Godderis L. (2017). Changes in DNA methylation induced by multi-walled carbon nanotube exposure in the workplace. Nanotoxicology, 11: 1195–1210. Search in Google Scholar

Gliga A.R., Di Bucchianico S., Lindvall J., Fadeel B., Karlsson H.L. (2018). RNA-sequencing reveals long-term effects of silver nanoparticles on human lung cells. Sci. Rep., 8: 6668. Search in Google Scholar

Gong C., Tao G., Yang L., Liu J., Liu Q., Li W., Zhuang Z. (2012). Methylation of PARP-1 promoter involved in the regulation of nano-SiO2-induced decrease of PARP-1 mRNA expression. Toxicol Lett., 209: 264–269. Search in Google Scholar

Gong C., Tao G., Yang L., Liu J., Liu Q., Zhuang Z. (2010). SiO2 nanoparticles induce global genomic hypomethylation in HaCaT cells. Biochem. Biophys. Res. Commun., 397: 396–400. Search in Google Scholar

Gupta J., Sharma S., Sharma N.R., Kabra D. (2020). Phytochemicals enriched in spices: a source of natural epigenetic therapy. Arch. Pharm. Res., 43: 171–186. Search in Google Scholar

Gupta R., Xie H. (2018). Nanoparticles in daily life: applications, toxicity and regulations. J. Environ. Pathol. Toxicol. Oncol., 37: 209–230. Search in Google Scholar

Hanot-Roy M., Tubeuf E., Guilbert A., Bado-Nilles A., Vigneron P., Trouiller B., Braun A., Lacroix G. (2016). Oxidative stress pathways involved in cytotoxicity and genotoxicity of titanium dioxide (TiO2) nanoparticles on cells constitutive of alveolo-capillary barrier in vitro. Toxicol. In vitro, 33: 125–135. Search in Google Scholar

Hu J., Lin W., Lin B., Wu K., Fan H., Yu Y. (2019). Persistent DNA methylation changes in zebrafish following graphene quantum dots exposure in surface chemistry-dependent manner. Ecotoxicol. Environ. Saf., 169: 370–375. Search in Google Scholar

Huang Y., Wu R., Su Z.Y., Guo Y., Zheng X., Yang C.S., Kong A.N. (2017). A naturally occurring mixture of tocotrienols inhibits the growth of human prostate tumor, associated with epigenetic modifications of cyclin-dependent kinase inhibitors p21 and p27. J. Nutr. Biochem., 40: 155–163. Search in Google Scholar

Jiang Z., Lai Y., Beaver J.M., Tsegay P.S., Zhao M.L., Horton J., Zamora M., Rein H.L., Miralles F., Shaver M., Hutcheson J.D., Agoulnik I., Wilson S.H., Liu Y. (2020). Oxidative DNA damage modulates DNA methylation pattern in human breast cancer 1 (BRCA1) gene via the crosstalk between DNA polymerase β and a de novo DNA methyltransferase. Cells, 9: E225. Search in Google Scholar

Johansen K.M., Johansen J. (2006). Regulation of chromatin structure by histone H3S10 phosphorylation. Chromosome Res., 14: 393–404. Search in Google Scholar

Jou Y.J., Chen C.J., Liu Y.C., Way T.D., Lai C.H., Hua C.H., Wang C.Y., Huang S.H., Kao J.Y., Lin C.W. (2015). Quantitative phosphoproteomic analysis reveals γ-bisabolene inducing p53-mediated apoptosis of human oral squamous cell carcinoma via HDAC2 inhibition and ERK1/2 activation. Proteomics, 15: 3296–3309. Search in Google Scholar

Kalaiarasi A., Sankar R., Anusha C., Saravanan K., Aarthy K., Karthic S., Mathuram T.L., Ravikumar V. (2018). Copper oxide nanoparticles induce anticancer activity in A549 lung cancer cells by inhibition of histone deacetylase. Biotechnol Lett., 40: 249–256. Search in Google Scholar

Kanwal R., Datt M., Liu X., Gupta S. (2016). Dietary flavones as dual inhibitors of DNA methyltransferases and histone methyltransferases. PLoS One, 11(9):e0162956. Search in Google Scholar

Khafaga A.F., Abd El-Hack M.E., Taha, A.E., Elnesr S.S., Alagawany M. (2019). The potential modulatory role of herbal additives against Cd toxicity in human, animal, and poultry: a review. Environ. Sci. Poll. Res., 26: 4588–4604. Search in Google Scholar

Kiany T., Pishkar L., Sartipnia N., Iranbakhsh A., Barzin G. (2022). Effects of silicon and titanium dioxide nanoparticles on arsenic accumulation, phytochelatin metabolism, and antioxidant system by rice under arsenic toxicity. Environ. Sci. Pollut. Res. Int., 29: 34725–34737. Search in Google Scholar

Könen-Adıgüzel S., Ergene S. (2018). In vitro evaluation of the genotoxicity of CeO2 nanoparticles in human peripheral blood lymphocytes using cytokinesis-block micronucleus test, comet assay, and gamma H2AX. Toxicol. Ind. Health., 34: 293–300. Search in Google Scholar

Kopp B., Dario M., Zalko D., Audebert M. (2018). Assessment of a panel of cellular biomarkers and the kinetics of their induction in comparing genotoxic modes of action in HepG2 cells. Environ. Mol. Mutagen., 59: 516–528. Search in Google Scholar

Kung M.L., Hsieh S.L., Wu C.C., Chu T.H., Lin Y.C., Yeh B.W., Hsieh S. (2015). Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells. Nanoscale, 7: 1820–1829. Search in Google Scholar

Lebre F., Chatterjee N., Costa S., Fernández-de-Gortari E., Lopes C., Meneses, J., Ortiz L., Ribeiro A.R., Vilas-Boas V., Alfaro-Moreno E. (2022). Nanosafety: An Evolving Concept to Bring the Safest Possible Nanomaterials to Society and Environment. Nanomaterials, 12: 1810. Search in Google Scholar

Lee K.S., El-Sayed M.A. (2006). Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B., 110: 19220–19225. Search in Google Scholar

Liang Z.Z., Zhang Y.X., Zhu, R.M. Li Y.L., Jiang H.M., Li R.B., Chen Q.X., Wang Q., Tang L.Y., Ren Z.F. (2022). Identification of epigenetic modifications mediating the antagonistic effect of selenium against cadmium-induced breast carcinogenesis. Environ. Sci. Pollut. Res., 29: 22056–22068. Search in Google Scholar

Liou S.H., Wu W.T., Liao H.Y., Chen C.Y., Tsai C.Y., Jung W.T., Lee H.L. (2017). Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles. J. Hazard Mater., 331: 329–335. Search in Google Scholar

Liu D., Wu D., Zhao L., Yang Y., Ding J., Dong L., Hu L., Wang F., Zhao X., Cai Y., Jin J. (2015). Arsenic trioxide reduces global histone H4 acetylation at lysine 16 through direct binding to histone acetyltransferase hMOF in human cells. PLoS One, 10:e0141014. Search in Google Scholar

Liu J., Zhao Y., Ge W., Zhang P., Liu X., Zhang W., Hao Y., Yu S., Li L., Chu M., Min L., Zhang H., Shen W. (2017). Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways. Oncotarget, 8: 42673–42692. Search in Google Scholar

Long J., Ma W., Yu Z., Liu H., Cao Y. (2019). Multi-walled carbon nanotubes (MWCNTs) promoted lipid accumulation in THP-1 macrophages through modulation of endoplasmic reticulum (ER) stress. Nanotoxicology, 13: 938–951. Search in Google Scholar

Lu X., Miousse I.R., Pirela S.V., Melnyk S., Koturbash I., Demokritou P. (2016). Short-term exposure to engineered nanomaterials affects cellular epigenome. Nanotoxicology, 10: 140–150. Search in Google Scholar

Lu X., Miousse I.R., Pirela S.V., Moore J.K., Melnyk S., Koturbash I., Demokritou P. (2016). In vivo epigenetic effects induced by engineered nanomaterials: A case study of copper oxide and laser printer-emitted engineered nanoparticles. Nanotoxicology, 10: 629–639. Search in Google Scholar

Lv L., Liu Y., Zhang P., Zhang X., Liu J., Chen T., Su P., Li H., Zhou Y. (2015). The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials, 39: 193–205. Search in Google Scholar

Mira A., Shimizu K. (2015). In vitro cytotoxic activities and molecular mechanisms of angelica shikokiana extract and its isolated compounds. Pharmacogn. Mag., 11(Suppl 4): S564–S569. Search in Google Scholar

Missaoui W.N., Arnold R.D., Cummings B.S. (2018). Toxicological status of nanoparticles: what we know and what we don’t know. Chem. Biol. Interact., 295: 1–12. Search in Google Scholar

Mytych J., Zebrowski J., Lewinska A., Wnuk M. (2017). Prolonged effects of silver nanoparticles on p53/p21 pathway-mediated proliferation, DNA damage response, and methylation parameters in HT22 hippocampal neuronal cells. Mol. Neurobiol., 54: 1285–300. Search in Google Scholar

Ng C.T., Dheen S.T., Yip W.C., Ong C.N., Bay B.H., Yung L.Y.L. (2011). The induction of epigenetic regulation of PROS1 gene in lung fibroblasts by gold nanoparticles and implications for potential lung injury. Biomaterials, 32: 7609–7615. Search in Google Scholar

Öner D., Ghosh M., Bové H., Moisse M., Boeckx B., Duca R.C., Poels K., Luyts K., Putzeys E., Van Landuydt K., Vanoirbeek J.A., Ameloot M., Lambrechts D., Godderis L., Hoet P.H. (2018). Differences in MWCNT- and SWCNT-induced DNA methylation alterations in association with the nuclear deposition. Part Fibre Toxicol., 15: 11. Search in Google Scholar

Öner D., Ghosh M., Coorens R., Bové H., Moisse M., Lambrechts D., Ameloot M., Godderis L., Hoet P.M. (2020). Induction and recovery of CpG site specific methylation changes in human bronchial cells after long-term exposure to carbon nanotubes and asbestos. Environ. Int., 137: 105530. Search in Google Scholar

Öner D., Ghosh M., Coorens R., Bové H., Moisse M., Lambrechts D., Ameloot M., Godderis L., Hoet P.M. (2017). Epigenetic effects of carbon nanotubes in human monocytic cells. Mutagenesis, 32: 181–191. Search in Google Scholar

Ooi S.K., O’Donnel A.H., Bestor T.H. (2009). Mammalian cytosine methylation at a glance. J. Cell Sci., 122: 2787–2791. Search in Google Scholar

Pascoal G.L., Novaes G.M., Sobrinho M.P., Hirayama A.B., Castro I.A., Ong T.P. (2022). Selenium supplementation during puberty and young adulthood mitigates obesity-induced metabolic, cellular and epigenetic alterations in male rat physiology. Antioxidants, 11: 895. Search in Google Scholar

Patil N.A., Gade W.N., Deobagkar D.D. (2016). Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: alterations in DNA methylation. Int. J. Nanomedicine, 11: 4509–4519. Search in Google Scholar

Patil Y.M., Rajpathak S.N., Deobagkar D.D. (2019). Characterization and DNA methylation modulatory activity of gold nanoparticles synthesized by Pseudoalteromonas strain. J. Biosci., 14: 4573–4587. Search in Google Scholar

Pogribna M., Koonce N.A., Mathew A., Word B., Patri A.K., Lyn-Cook B., Hammons G. (2020). Effect of titanium dioxide nanoparticles on DNA methylation in multiple human cell lines. Nanotoxicology, 14: 534–553. Search in Google Scholar

Prasad R.Y., Chastain P.D., Nikolaishvili-Feinberg N., Smeester L., Kaufmann W.K., Fry R.C. (2013). Titanium dioxide nanoparticles activate the ATM-Chk2 DNA damage response in human dermal fibroblasts. Nanotoxicology, 7: 1111–1119. Search in Google Scholar

Qian Y., Zhang J., Hu Q., Xu M., Chen Y., Hu G., Zhao M., Liu S. (2015). Silver nanoparticle-induced hemoglobin decrease involves alteration of histone 3 methylation status. Biomaterials, 70: 12–22. Search in Google Scholar

Romanek J. (2013). Epigenetic basis of molecular changes in animal cells with particular regard to embryonic development – a review. Ann. Anim. Sci., 13: 675–685. Search in Google Scholar

Rossner P., Vrbova K., Rossnerova A., Zavodna T., Milcova A., Klema J., Vecera Z., Mikuska P., Coufalik P., Capka L., Krumal K., Docekal B., Holan V., Machala M., Topinka J. (2020). Gene expression and epigenetic changes in mice following inhalation of Copper (II) oxide nanoparticles. Nanomaterials, 10: 550. Search in Google Scholar

Rossnerova A., Honkova K., Pelclova D., Zdimal V., Hubacek J.A., Chvojkova I., Vrbova K., Rossner P., Topinka J., Vlckova S., Fenclova Z., Lischkova L., Klusackova P., Schwarz J., Ondracek J., Ondrackova L., Kostejn M., Klema J., Dvorackova S. (2020). DNA methylation profiles in a group of workers occupationally exposed to nanoparticles. Int. J. Mol. Sci., 21: 2420. Search in Google Scholar

Saeed M., Abd El-Hack M.E., Alagawany M., Arain M.A., Arif M., Mirza M.A., Dhama K. (2017). Chicory (cichorium intybus) herb: Chemical composition, pharmacology, nutritional and healthical applications. Inter. J. Pharm., 13: 351–360. Search in Google Scholar

Saeed M., Abd El-Hack M.E., Arif M., El-Hindawy M.M., Attia A.I., Mahrose K.M., Noreldin A.E. (2017). Impacts of distiller’s dried grains with solubles as replacement of soybean meal plus vitamin E supplementation on production, egg quality and blood chemistry of laying hens. Ann. Anim. Sci., 17: 849–862. Search in Google Scholar

Saeed M., Yatao, X., Hassan F.U., Arain M.A., Abd El-Hack M.E., Noreldin A.E., Sun C. (2018). Influence of graded levels of l-theanine dietary supplementation on growth performance, carcass traits, meat quality, organs histomorphometry, blood chemistry and immune response of broiler chickens. Inter. J. Mol. Sci., 19: 462. Search in Google Scholar

Samiec M., Skrzyszowska M. (2018). Can reprogramming of overall epigenetic memory and specific parental genomic imprinting memory within donor cell-inherited nuclear genome be a major hindrance for the somatic cell cloning of mammals? – a review. Ann. Anim. Sci., 18: 623–638. Search in Google Scholar

Schulte P.A., Leso V., Niang M., Iavicoli I. (2019). Current state of knowledge on the health effects of engineered nanomaterials in workers: a systematic review of human studies and epidemiological investigations. Scand. J. Work Environ. Health, 45: 217–238. Search in Google Scholar

Seidel C., Kirsch A., Fontana C., Visvikis A., Remy A., Gaté L., Darne C., Guichard Y. (2017). Epigenetic changes in the early stage of silica-induced cell transformation. Nanotoxicology, 11: 923–935. Search in Google Scholar

Semik-Gurgul E., Ząbek T., Kawecka-Grochocka E., Zalewska M., Kościuczuk E., Bagnicka E. (2022). Epigenetic states of genes controlling immune responsiveness in bovine chronic mastitis. Ann. Anim. Sci., 22: 575–581. Search in Google Scholar

Setyawati M.I., Khoo P.K., Eng B.H., Xiong S., Zhao X., Das G.K., Tan T.T., Loo J.S., Leong D.T., Ng K.W. (2013). Cytotoxic and genotoxic characterization of titanium dioxide, gadolinium oxide, and poly (lactic-co-glycolic acid) nanoparticles in human fibroblasts. J. Biomed. Mater Res A., 101: 633–640. Search in Google Scholar

Shyamasundar S., Ng C.T., Yung L.L., Dheen S.T., Bay B.H. (2015). Epigenetic mechanisms in nanomaterial-induced toxicity. Epigenomics, 7: 395–411. Search in Google Scholar

Sierra M.I., Valdés A., Fernández A.F., Torrecillas R., Fraga M.F. (2016). The effect of exposure to nanoparticles and nanomaterials on the mammalian epigenome. Int. J. Nanomedicine, 11: 6297–6306. Search in Google Scholar

Sima M., Vrbova K., Zavodna T., Honkova K., Chvojkova I., Ambroz A., Klema J., Rossnerova A., Polakova K., Malina T., Belza J., Topinka J., Rossner P. Jr. (2020). The differential effect of carbon dots on gene expression and DNA methylation of human embryonic lung fibroblasts as a function of surface charge and dose. Int. J. Mol. Sci., 4763.10.3390/ijms21134763736994632635498 Search in Google Scholar

Skrzyszowska M., Samiec M. (2020). Enhancement of in vitro developmental outcome of cloned goat embryos after epigenetic modulation of somatic cell-inherited nuclear genome with trichostatin A. Ann. Anim. Sci., 20: 97–108. Search in Google Scholar

Smolkova B., Miklikova S., Horvatova K.V., Babelova A., El Yamani N., Zdurencikova M., Fridrichova I., Zmetakova I., Krivulcik T., Kalinkova L., Matuskova M., Kucerova L., Dusinska M. (2016). Global and gene specific DNA methylation in breast cancer cells was not affected during epithelial-to-mesenchymal transition in vitro. Neoplasma, 63: 901–910. Search in Google Scholar

Sooklert K., Nilyai S., Rojanathanes R., Jindatip D., Sae-Liang N., Kitkumthorn N., Mutirangura A., Sereemaspun A. (2019). N-acetylcysteine reverses the decrease of DNA methylation status caused engineered gold, silicon, and chitosan nanoparticles. Int. J. Nanomedicine, 14: 4573–4587. Search in Google Scholar

Stoccoro A., Di Bucchianico S., Coppedé F., Ponti J., Uboldi C., Blosi M., Delpivo C., Ortelli S., Costa A.L., Migliore L. (2017). Multiple endpoints to evaluate pristine and remediated titanium dioxide nanoparticles genotoxicity in lung epithelial A549 cells. Toxicol Lett., 276: 48–61. Search in Google Scholar

Surapaneni S.K., Bashir S., Tikoo K. (2018). Gold nanoparticles-induced cytotoxicity in triple negative breast cancer involves different epigenetic alterations depending upon the surface charge. Sci. Rep., 8: 12295. Search in Google Scholar

Tabish A.M., Poels K., Byun H.M., Luyts K., Baccarelli A.A., Martens J., Kerkhofs S., Seys S., Hoet P., Godderis L. (2017). Changes in DNA methylation in mouse lungs after a single intra-tracheal administration of nanomaterials. PLoS One, 12:e0169886. Search in Google Scholar

Tarantini A., Lanceleur R., Mourot A., Lavault M.T., Casterou G., Jarry G., Hogeveen K., Fessard V. (2015). Toxicity, genotoxicity and proinflammatory effects of amorphous nanosilica in the human intestinal Caco-2 cell line. Toxicol In vitro, 29: 398–407. Search in Google Scholar

Torres I.O., Fudjimori D.G. (2015). Functional coupling between writers, erasers and readers of histone and DNA methylation. Curr. Opin. Struct. Biol., 25: 68–75. Search in Google Scholar

Valinluck V., Sowers L.C. (2007). Inflammation-mediated cytosine damage: a mechanistic link between inflammation and the epigenetic alterations in human cancers. Cancer Res., 67: 5583–5586. Search in Google Scholar

Valinluck V., Tsai H.H., Rogstad D.K., Burdzy A., Bird A., Sowers L.C. (2004). Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res., 32: 4100–4108. Search in Google Scholar

Wan R., Mo Y., Feng L., Chien S., Tollerud D.J., Zhang Q. (2012). DNA damage caused by metal nanoparticles: involvement of oxidative stress and activation of ATM. Chem. Res. Toxicol., 25: 1402–1411. Search in Google Scholar

Wu X., Zhang Y. (2017). TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet., 18: 517–534. Search in Google Scholar

Xiaoli F., Qiyue C., Weihong G., Yaqing Z., Chen H., Junrong W., Longquan S. (2020). Toxicology data of graphene-family nanomaterials: an update. Arch. Toxicol., 94: 1915–1939. Search in Google Scholar

Zhang L., Han B., Xiang J., Liu K., Dong H., Gao X. (2018). Silica nanoparticle releases SIRT6-induced epigenetic silencing of follistatin. Int. J. Biochem. Cell Biol., 95: 27–34. Search in Google Scholar

Zhang T., Du E., Liu Y., Cheng J., Zhang Z., Xu Y., Qi S., Chen Y. (2020). Anticancer effects of zinc oxide nanoparticles through altering the methylation status of histone on bladder cancer cells. Int. J. Nanomed., 15: 1457–1468. Search in Google Scholar

Zhao X., Rao Y., Liang J., Lin S., Wang X., Li Z., Huang J. (2019). Silver Nanoparticle-Induced Phosphorylation of Histone H3 at Serine 10 Involves MAPK Pathways. Biomolecules, 9: 78. Search in Google Scholar

Zhao X., Takabayashi F., Ibuki Y. (2016). Coexposure to silver nanoparticles and ultraviolet A synergistically enhances the phosphorylation of histone H2AX. J. Photochem. Photobiol. B., 162: 213–222. Search in Google Scholar

Zhao X., Toyooka T., Ibuki Y. (2017). Silver nanoparticle-induced phosphorylation of histone H3 at serine 10 is due to dynamic changes in actin filaments and the activation of Aurora kinases. Toxicol. Lett., 276: 39–47. Search in Google Scholar

Zhou W., Tian D., He J., Yan X., Zhao J., Yuan X., Peng S. (2019). Prolonged exposure to carbon nanoparticles induced methylome remodeling and gene expression in zebrafish heart. J. Appl. Toxicol., 39: 322–332. Search in Google Scholar

Zou Y., Li Q., Jiang L., Guo C., Li Y., Yu Y., Li Y., Duan J., Sun Z. (2016). DNA hypermethylation of CREB3L1 and Bcl-2 associated with the mitochondrial-mediated apoptosis via PI3K/Akt pathway in human BEAS-2B cells exposure to silica nanoparticles. PLoS One, 11:e0158475. Search in Google Scholar

Zuo Q., Wu R., Xiao X Yang C., Yang Y., Wang C., Lin L., Kong A.N. (2018). The dietary flavone luteolin epigenetically activates the Nrf2 pathway and blocks cell transformation in human colorectal cancer HCT116 cells. J. Cell Biochem., 119: 9573–9582. Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine