Zacytuj

Abdelmegeed S.M., Mohammed S. (2018). Canine mammary tumors as a model for human disease. Oncol. Lett., 15: 8195–8205. Search in Google Scholar

Abubakar M., Guo C., Koka H., Sung H., Shao N., Guida J., Deng J., Li M., Hu N., Zhou B., Lu N., Yang X.R. (2019). Clinicopathological and epidemiological significance of breast cancer subtype reclassification based on p53 immunohistochemical expression. NPJ Breast Cancer, 5: 1–9. Search in Google Scholar

Ahern T.E., Bird R.C., Bird A.E., Wolfe L.G. (1996). Expression of the oncogene c-erbB-2 in canine mammary cancers and tumorderived cell lines. Am. J. Vet. Res., 57: 693–696. Search in Google Scholar

Al-Mansour M.A., Kubba M.A., Al-Azreg S.A., Dribika S.A. (2018). Comparative histopathology and immunohistochemistry of human and canine mammary tumors. Open Vet. J., 8: 243–249. Search in Google Scholar

Anguille S., Smits E.L., Bryant C., Van Acker H.H., Goossens H., Lion E., Fromm P.D., Hart D.N., Van Tendeloo V.F., Berneman Z.N. (2015). Dendritic cells as pharmacological tools for cancer immunotherapy. Pharm. Rev., 67: 731–753. Search in Google Scholar

Arenas C., Peña L., Granados-Soler J.L., Pérez-Alenza M.D. (2016). Adjuvant therapy for highly malignant canine mammary tumours: Cox-2 inhibitor versus chemotherapy: a case–control prospective study. Vet. Rec., 179: 125–125. Search in Google Scholar

Ariyarathna H., Thomson N.A., Aberdein D., Perrott M.R., Munday J.S. (2020). Increased programmed death ligand (PD-L1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) expression is associated with metastasis and poor prognosis in malignant canine mammary gland tumours. Vet. Immunol. Immunopathol., 230: 110142. Search in Google Scholar

Baba A.I., Câtoi C. (2007). Mammary gland tumors. Comp. Oncol. The Publishing House of the Romanian Academy. Search in Google Scholar

Baker R., Lumsden J.H. (2000). The head and neck-oropharynx, tonsils, salivary gland and thyroid. In: Color atlas of cytology of the dog and cat. Mosby, St. Louis, pp. 95–116. Search in Google Scholar

Barenholz Y.C. (2012). Doxil® – the first FDA-approved nano-drug: lessons learned. J. Controlled Release, 160: 117–134. Search in Google Scholar

Bird R.C., DeInnocentes P., Bird A.E.C., Kabir F.M.L., Martinez-Romero E.G., Smith A.N., Smith B.F. (2019). Autologous hybrid cell fusion vaccine in a spontaneous intermediate model of breast carcinoma. J. Vet. Sci., 20: e48. Search in Google Scholar

Borge K.S., Børresen-Dale A.L., Lingaas F. (2011). Identification of genetic variation in 11 candidate genes of canine mammary tumour. Vet. Comp. Oncol., 9: 241–250. Search in Google Scholar

Brønden L.B., Flagstad A., Rutteman G.R., Teske E. (2003). Study of dog and cat owners’ perceptions of medical treatment for cancer. Vet. Rec., 152: 77–80. Search in Google Scholar

Brown N.O., Patnaik A.K., MacEwen E.G. (1985). Canine hemangiosarcoma: retrospective analysis of 104 cases. J. Am. Vet. Med. Assoc., 186: 56–58. Search in Google Scholar

Brunelle M., Sartin E.A., Wolfe L.G., Sirois J., Dore M. (2006). Cyclooxygenase-2 expression in normal and neoplastic canine mammary cell lines. Vet. Pathol., 43: 656–666. Search in Google Scholar

Canadas-Sousa A., Santos M., Leal B., Medeiros R., Dias-Pereira P. (2019). Estrogen receptors genotypes and canine mammary neoplasia. BMC Vet. Res., 15: 1–10. Search in Google Scholar

Carvalho M. I., Pires I., Prada J., Queiroga F.L. (2014). A role for Tlymphocytes in human breast cancer and in canine mammary tumors. Biomed. Res. Int., 2014: 130894. Search in Google Scholar

Chang S.C., Chang C.C., Chang T.J., Wong M.L. (2005). Prognostic factors associated with survival two years after surgery in dogs with malignant mammary tumors: 79 cases (1998–2002). J. Am. Vet. Med. Assoc., 227: 1625–1629. Search in Google Scholar

Cheung Y.C., Chen S.C., Hsieh I.C., Lo Y.F., Tsai H.P., Hsueh S., Yen T.C. (2006). Multidetector computed tomography assessment on tumor size and nodal status in patients with locally advanced breast cancer before and after neoadjuvant chemotherapy. Eur. J. Surg. Oncol., 32: 1186–1190. Search in Google Scholar

Cimino-Mathews A., Thompson E., Taube J.M., Ye X., Lu Y., Meeker A., Xu H., Sharma R., Lecksell K., Cornish T.C., Cuka N., Argani P., Emens L.A. (2016). PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas. Hum. Pathol., 47: 52–63. Search in Google Scholar

Collivignarelli F., Tamburro R., Aste G., Falerno I., Del Signore F., Simeoni F., Patsikas M., Gianfelici J., Terragni R., Attorri V., Carluccio, A., Vignoli M. (2021). Lymphatic drainage mapping with indirect lymphography for canine mammary tumors. Animals, 11: 1115. Search in Google Scholar

Costa R.L.B., Soliman H., Czerniecki B.J. (2017). The clinical development of vaccines for HER2+ breast cancer: Current landscape and future perspectives. Cancer Treat. Rev., 61: 107–115. Search in Google Scholar

Coulie P.G., Van den Eynde B.J., Van Der Bruggen P., Boon T. (2014). Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer, 14: 135–146. Search in Google Scholar

Cullen S.P., Brunet M., Martin S.J. (2010). Granzymes in cancer and immunity. Cell Death Differ., 17: 616–623. Search in Google Scholar

De Campos C.B., Lavalle G.E., Monteiro L.N., Pêgas G.R.A., Fialho S.L., Balabram D., Cassali G.D. (2018). Adjuvant thalidomide and metronomic chemotherapy for the treatment of canine malignant mammary gland neoplasms. In Vivo, 32: 1659–1666. Search in Google Scholar

DeInnocentes P., Li L.X., Sanchez R.L., Bird R.C. (2006). Expression and sequence of canine SIRT2 and p53 genes in canine mammary tumour cells – effects on downstream targets Wip1 and p21/Cip1. Vet. Comparative Oncol., 4: 161–177. Search in Google Scholar

Dias M.L.D.M., Andrade J.M.L., Castro M.B.D., Galera P.D. (2016). Survival analysis of female dogs with mammary tumors after mastectomy: epidemiological, clinical and morphological aspects. Pesquisa Vet. Bras., 36: 181–186. Search in Google Scholar

Easton D.F., Pooley K.A., Dunning A.M., Pharoah P.D., Thompson D., Ballinger D.G. et al. (2007). Genome-wide association study identifies novel breast cancer susceptibility loci. Nature, 447: 1087–1093. Search in Google Scholar

Egenvall A., Bonnett B.N., Öhagen P., Olson P., Hedhammar Å., von Euler H. (2005). Incidence of and survival after mammary tumors in a population of over 80,000 insured female dogs in Sweden from 1995 to 2002. Prevent. Vet. Med., 69: 109–127. Search in Google Scholar

Elston C.W., Ellis I.O. (1991). Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology, 19: 403–410. Search in Google Scholar

Ernst B., Anderson K.S. (2015). Immunotherapy for the treatment of breast cancer. Curr. Oncol. Rep., 17: 1–10. Search in Google Scholar

Farzad N., Barati N., Momtazi-Borojeni A.A., Yazdani M., Arab A., Razazan A., Shariat S., Mansourian M., Abbasi A., Saberi Z., Badiee A., Jalali S.A., Jaafari M.R. (2019). P435 HER2/neu-derived peptide conjugated to liposomes containing DOPE as an effective prophylactic vaccine formulation for breast cancer. Artif Cells Nanomed. Biotechnol., 47: 664–672. Search in Google Scholar

Fazekas J., Fürdös I., Singer J., JensenJarolim E. (2016). Why man’s best friend, the dog, could also benefit from an antiHER-2 vaccine. Oncol. Lett., 12: 2271–2276. Search in Google Scholar

Fisher B., Costantino J.P., Wickerham D.L., Cecchini R.S., Cronin W.M., Robidoux A., Bevers T.B., Kavanah M.T., Atkins J.N., Margolese R.G., Runowicz C.D. (2005). Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J. Natl. Cancer Inst., 97: 1652–1662. Search in Google Scholar

Foong J.N., Selvarajah G.T., Rasedee A., Rahman H.S., How C.W., Beh C.Y., Teo G.Y., Ku C.L. (2018). Zerumbone-loaded nanostructured lipid carrier induces apoptosis of canine mammary adenocarcinoma cells. Biomed Res. Int., 2018: 8691569. Search in Google Scholar

Fossum T.W. (2013). Small animal surgery. Fourth edition. Mosby Elsevier, pp. 1142–1233. Search in Google Scholar

Foy S.P., Mandl S.J., dela Cruz T., Cote J.J., Gordon E.J., Trent E., Delcayre A., Breitmeyer J., Franzusoff A., Rountree R.B. (2016). Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells. Cancer Immunol. Immunother., 65: 537–549. Search in Google Scholar

Gabai V., Venanzi F.M., Bagashova E., Rud O., Mariotti F., Vullo C., Catone G., Sherman M.Y., Concetti A., Chursov A., Latanova A., Shcherbinina V., Shifrin V., Shneider A. (2014). Pilot study of p62 DNA vaccine in dogs with mammary tumors. Oncotarget, 5: 12803. Search in Google Scholar

Gaddam S., Heller S.L., Babb J.S., Gao Y. (2021). Male breast cancer risk assessment and screening recommendations in high-risk men who undergo genetic counseling and multigene panel testing. Clin. Breast Cancer, 21: e74–e79. Search in Google Scholar

Gatti-Mays M.E., Balko J.M., Gameiro S.R., Bear H.D., Prabhakaran S., Fukui J., et al. (2019). If we build it, they will come: targeting the immune response to breast cancer. NPJ Breast Cancer, 5: 1–13. Search in Google Scholar

Gilbertson S.R., Kurzman I.D., Zachrau R.E., Hurvitz A.I., Black M.M. (1983). Canine mammary epithelial neoplasms: biologic implications of morphologic characteristics assessed in 232 dogs. Vet. Pathol., 20: 127–142. Search in Google Scholar

Gobello C., Corrada Y. (2001). Canine mammary tumors: An endocrine clinical approach. Compendium on Continuing Education for the Practising Veterinarian – North American Edition, 23: 705–711. Search in Google Scholar

Goldschmidt M., Peña L., Rasotto R., Zappulli V. (2011). Classification and grading of canine mammary tumors. Vet. Pathol., 48: 117–131. Search in Google Scholar

Guo Z., He B., Yuan L., Dai W., Zhang H., Wang X., Wang J., Zhang X., Zhang Q. (2015). Dual targeting for metastatic breast cancer and tumor neovasculature by EphA2-mediated nanocarriers. Int. J. Pharm., 493: 380–389. Search in Google Scholar

Harris T.J., Drake C.G. (2013). Primer on tumor immunology and cancer immunotherapy. J. Immunother. Cancer, 1: 1–9. Search in Google Scholar

He Z., Chen Z., Tan M., Elingarami S., Liu Y., Li T., Deng Y., He N., Li S., Fu J., Li W. (2020). A review on methods for diagnosis of breast cancer cells and tissues. Cell Proliferation, 53: e12822. Search in Google Scholar

Heller D.A., Clifford C.A., Goldschmidt M.H., Holt D.E., Shofer F.S., Smith A., Sorenmo K.U. (2005). Cyclooxygenase-2 expression is associated with histologic tumor type in canine mammary carcinoma. Vet. Pathol., 42: 776–780. Search in Google Scholar

Hirano F., Kaneko, K., Tamura H., Dong H., Wang S., Ichikawa M., Rietz C., Flies D.B., Lau J.S., Zhu G., Tamada K., Chen L. (2005). Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res., 65: 1089–1096. Search in Google Scholar

Hurst E.A., Pang L.Y., Argyle D.J. (2019). The selective cyclooxygenase-2 inhibitor mavacoxib (Trocoxil) exerts anti-tumour effects in vitro independent of cyclooxygenase-2 expression levels. Vet. Comp. Oncol., 17: 194–207. Search in Google Scholar

Igase M., Nemoto Y., Itamoto K., Tani K., Nakaichi M., Sakurai M., Sakai Y., Noguchi S., Kato M., Tsukui T., Mizuno T. (2020). A pilot clinical study of the therapeutic antibody against canine PD-1 for advanced spontaneous cancers in dogs. Sci. Rep., 10: 1–16. Search in Google Scholar

Jaillardon L., Barthélemy A., Goy-Thollot I., Pouzot-Nevoret C., Fournel-Fleury C. (2012). Mammary gland carcinoma in a dog with peripheral blood and bone marrow involvement associated with disseminated intravascular coagulation. Vet. Clin. Pathol, 41: 261–265. Search in Google Scholar

Joseph R.B. (2002). Encyclopedia of Cancer: Volume 1 A-R. New York: Academic Press, 2002, 2nd Edition. Search in Google Scholar

Kalinski P., Talmadge J.E. (2017). Tumor immuno-environment in cancer progression and therapy. Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy, 1–18. Springer, Cham. Search in Google Scholar

Kamphorst A.O., Pillai R.N., Yang S., Nasti T.H., Akondy R.S., Wieland A., et al. (2017). Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1–targeted therapy in lung cancer patients. Proc. Natl Acad. Sci., 114: 4993–4998. Search in Google Scholar

Karami F., Mehdipour P. (2013). A comprehensive focus on global spectrum of BRCA1 and BRCA2 mutations in breast cancer. BioMed Res. Intern., 2013: 928562. Search in Google Scholar

Kimiz-Gebologlu I., Gulce-Iz S., Biray-Avci C. (2018). Monoclonal antibodies in cancer immunotherapy. Mol. Biol. Rep., 45: 2935–2940. Search in Google Scholar

Klopfleisch R., Lenze D., Hummel M., Gruber A.D. (2010). Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles. BMC Cancer, 10: 618. Search in Google Scholar

Knottenbelt C., Chambers G., Gault E., Argyle D.J. (2006). The in vitro effects of piroxicam and meloxicam on canine cell lines. J. Small Animal Prac., 47: 14–20. Search in Google Scholar

Kristiansen V.M., Nødtvedt A., Breen A.M., Langeland M., Teige J., Goldschmidt M., Jonasdottir T.J., Grotmol T., Sørenmo K. (2013). Effect of ovariohysterectomy at the time of tumor removal in dogs with benign mammary tumors and hyperplastic lesions: a randomized controlled clinical trial. J. Vet. Intern. Med., 27: 935–942. Search in Google Scholar

Kristiansen V.M., Peña L., Díez Córdova L., Illera J.C., Skjerve E., Breen A.M., Cofone M.A., Langeland M., Teige J., Goldschmidt M., Sørenmo K.U. (2016). Effect of ovariohysterectomy at the time of tumor removal in dogs with mammary carcinomas: a randomized controlled trial. J. Vet. Intern. Med., 30: 230–241. Search in Google Scholar

Ku C.K., Kass P.H., Christopher M.M. (2017). Cytologic–histologic concordance in the diagnosis of neoplasia in canine and feline lymph nodes: a retrospective study of 367 cases. Vet. Comp. Oncol., 15: 1206–1217. Search in Google Scholar

Lakins M.A., Ghorani E., Munir H., Martins C.P., Shields J.D. (2018). Cancer-associated fibroblasts induce antigen-specific deletion of CD8+ T cells to protect tumour cells. Nat. Comm., 9: 1–9. Search in Google Scholar

Lana S.E., Rutteman G.R., Withrow S.J. (2007). Tumors of the mammary gland. Withrow & MacEwen’s Small Animal Clinical Oncology, 619–636. WB Saunders. Search in Google Scholar

Lavalle G.E., De Campos C.B., Bertagnolli A.C., Cassali G.D. (2012). Canine malignant mammary gland neoplasms with advanced clinical staging treated with carboplatin and cyclooxygenase inhibitors. In Vivo, 26: 375–379. Search in Google Scholar

Levi M., Salaroli R., Parenti F., De Maria R., Zannoni A., Bernardini C., et al. (2021). Doxorubicin treatment modulates chemoresistance and affects the cell cycle in two canine mammary tumour cell lines. BMC Vet. Res., 17: 1–15. Search in Google Scholar

Li C., Jiang P., Wei S., Xu X., Wang J. (2020). Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol. Cancer, 19: 1–23. Search in Google Scholar

Li Y., Miao W., He D., Wang S., Lou J., Jiang Y., Wang S. (2021). Recent progress on immunotherapy for breast cancer: tumor microenvironment, nanotechnology and more. Front. Bioeng. Biotech., 9: 453. Search in Google Scholar

Liu C.Y., Hung M.H., Wang D.S., Chu P.Y., Su J.C., Teng T.H., Huang C.T., Chao T.T., Wang C.Y., Shiau C.W., Tseng L.M., Chen K.F. (2014). Tamoxifen induces apoptosis through cancerous inhibitor of protein phosphatase 2A–dependent phospho-Akt inactivation in estrogen receptor–negative human breast cancer cells. Breast Cancer Res., 16: 1–15. Search in Google Scholar

Madewell B.R., Phillips B.S., Kraegel S.A. (1999). Optimizing the diagnostic use of a small clinical biopsy. J. Vet. Diag. Invest., 11: 94–97. Search in Google Scholar

Maekawa N., Konnai S., Takagi S., Kagawa Y., Okagawa T., Nishimori A., et al. (2017). A canine chimeric monoclonal antibody targeting PD-L1 and its clinical efficacy in canine oral malignant melanoma or undifferentiated sarcoma. Sci. Rep., 7: 1–12. Search in Google Scholar

Manikkan Dileepkumar K., Kumar Maiti S., Kumar N., Shams-uz-Zama M.M. (2015). Therapeutic evaluation of anti-angiogenic and chemotherapy with or without cox-2 inhibitor and immunomodulator drug in the management of canine mammary neoplasm. Pak. Vet. J., 35: 365–370. Search in Google Scholar

Mann F.A., Constantinescu G.M., Yoon H.Y. (2011). Fundamentals of small animal surgery. Wiley Blackwell Publishing Ltd., 448 pp. Search in Google Scholar

Mantovani A., Sozzani S., Locati M., Allavena P., Sica A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol., 23: 549–555. Search in Google Scholar

Mastelic-Gavillet B., Balint K., Boudousquie C., Gannon P. O., Kandalaft L.E. (2019). Personalized dendritic cell vaccines – recent breakthroughs and encouraging clinical results. Front. Immunol., 10: 766. Search in Google Scholar

McCourt M.R., Dieterly A.M., Mackey P.E., Lyon S.D., Rizzi T.E., Ritchey J.W. (2018). Complex mammary carcinoma with metastases to lymph nodes, subcutaneous tissue, and multiple joints in a dog. Vet. Clin. Pathol., 47: 477–483. Search in Google Scholar

McNeill C.J., Sorenmo K.U., Shofer F.S., Gibeon L., Durham A.C., Barber L.G., Baez J.L., Overleyet B. (2009). Evaluation of adjuvant doxorubicin-based chemotherapy for the treatment of feline mammary carcinoma. J. Vet. Intern. Med., 23: 123–129. Search in Google Scholar

Millanta F., Citi S., Della Santa D., Porciani M., Poli A. (2006). COX-2 expression in canine and feline invasive mammary carcinomas: correlation with clinicopathological features and prognostic fmolecular markers. Breast Cancer Res. Treat., 98: 115–120. Search in Google Scholar

Misdorp W. (1988). Canine mammary tumours: protective effect of late ovariectomy and stimulating effect of progestins. Vet. Quarterly, 10: 26–33. Search in Google Scholar

Mobasheri A., Cassidy J.P. (2010). Biomarkers in veterinary medicine: Towards targeted, individualised therapies for companion animals. Vet. J., 185: 1–3. Search in Google Scholar

Moe L. (2001). Population-based incidence of mammary tumours in some dog breeds. J. Reprod. Fertil. Suppl., 57: 439–443. Search in Google Scholar

Moon C.H., Kim D.H., Yun S.H., Lee H.B., Jeong S.M. (2022). Assessment of prognostic factors in dogs with mammary gland tumors: 60 cases (2014–2020). Korean J. Vet. Res., 62: 9–1. Search in Google Scholar

Mufudza C., Sorofa W., Chiyaka E.T. (2012). Assessing the effects of estrogen on the dynamics of breast cancer. Computational Math. Methods Med., 2012: 473572. Search in Google Scholar

Muhammadnejad A., Keyhani E, Mortazavi P., Behjati F., Haghdoost I.S. (2012). Overexpression of HER-2/neu in malignant mammary tumors: translation of clinicopathological features from dog to human. Asian Pac. J. Cancer Prev., 13: 6415–6421. Search in Google Scholar

Nakagawa M., Morimoto M., Takechi H., Tadokoro Y., Tangoku A. (2016). Preoperative diagnosis of sentinel lymph node (SLN) metastasis using 3D CT lymphography (CTLG). Breast Cancer, 23: 519–524. Search in Google Scholar

Nelde A., Rammensee H.G., Walz J.S. (2021). The peptide vaccine of the future. Mol. Cell. Proteom., 20: 100022. Search in Google Scholar

Nguyen F., Peña L., Ibisch C., Loussouarn D., Gama A., Rieder N., Belousov A., Campone M., Abadie J. (2018). Canine invasive mammary carcinomas as models of human breast cancer. Part 1: natural history and prognostic factors. Breast Cancer Res. Treat., 167: 635–648. Search in Google Scholar

Novosad C.A. (2003). Principles of treatment for mammary gland tumors. Clin. Tech. Small Animal Prac., 18: 107–109. Search in Google Scholar

Pan K., Guan X.X., Li Y.Q., Zhao J.J., Li J.J., Qiu H.J., et al. (2014). Clinical activity of adjuvant cytokine-induced killer cell immunotherapy in patients with post-mastectomy triple-negative breast cancer. Clin. Cancer Res., 20: 3003–3011. Search in Google Scholar

Pang L.Y., Argyle S.A., Kamida A., Morrison K.O.N., Argyle D.J. (2014). The long-acting COX-2 inhibitor mavacoxib (Trocoxil™) has anti-proliferative and pro-apoptotic effects on canine cancer cell lines and cancer stem cells in vitro. BMC Vet. Res., 10: 184. Search in Google Scholar

Papazoglou L.G., Basdani E., Rabidi S., Patsikas M.N., Karayiannopoulou M. (2014). Current surgical options for mammary tumor removal in dogs. J. Vet. Sci. Med., 2: 2–7. Search in Google Scholar

Peña L., Andrés P.D., Clemente M., Cuesta P., Perez-Alenza M.D. (2013). Prognostic value of histological grading in noninflammatory canine mammary carcinomas in a prospective study with two-year follow-up: relationship with clinical and histological characteristics. Vet. Pathol., 50: 94–105. Search in Google Scholar

Peña L., Gama A., Goldschmidt M.H., Abadie J., Benazzi C., Castagnaro M., et al. (2014). Canine mammary tumors: a review and consensus of standard guidelines on epithelial and myoepithelial phenotype markers, HER2, and hormone receptor assessment using immunohistochemistry. Vet. Pathol., 51: 127–145. Search in Google Scholar

Perez C.R., De Palma M. (2019). Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat. Comm., 10: 1–10. Search in Google Scholar

Perez A.T., Domenech G.H., Frankel C., Vogel C.L. (2002). Pegylated liposomal doxorubicin (Doxil®) for metastatic breast cancer: the Cancer Research Network, Inc., experience. Cancer Invest., 20: 22–29. Search in Google Scholar

Peruzzi D., Mesiti G., Ciliberto G., La Monica N., Aurisicchio L. (2010). Telomerase and HER-2/neu as targets of genetic cancer vaccines in dogs. Vaccine, 28: 1201–1208. Search in Google Scholar

Pievani A., Borleri G., Pende D., Moretta L., Rambaldi A., Golay J., Introna M. (2011). Dual-functional capability of CD3+CD56+ CIK cells, a T-cell subset that acquires NK function and retains TCRmediated specific cytotoxicity. Blood J. Am. Soc. Hematol., 118: 3301–3310. Search in Google Scholar

Planes-Laine G., Rochigneux P., Bertucci F., Chrétien A.S., Viens P., Sabatier R., Gonçalves A. (2019). PD-1/PD-L1 targeting in breast cancer: the first clinical evidences are emerging – a literature review. Cancers, 11: 1033. Search in Google Scholar

Polyak K. (2007). Breast cancer: origins and evolution. J. Clin. Invest., 117: 3155–3163. Search in Google Scholar

Queiroga F.L., Raposo T., Carvalho M.I., Prada J., Pires I. (2011). Canine mammary tumours as a model to study human breast cancer: most recent findings. In Vivo, 25: 455–465. Search in Google Scholar

Ramalho L.N.Z., Ribeiro-Silva A., Cassali G.D., Zucoloto S. (2006). The expression of p63 and cytokeratin 5 in mixed tumors of the canine mammary gland provides new insights into the histogenesis of these neoplasms. Vet. Pathol., 43: 424–429. Search in Google Scholar

Rasotto R., Berlato D., Goldschmidt M.H., Zappulli V. (2017). Prognostic significance of canine mammary tumor histologic subtypes: an observational cohort study of 229 cases. Vet. Pathol., 54: 571–578. Search in Google Scholar

Rawat P.S., Jaiswal A., Khurana A., Bhatti J.S., Navik U. (2021). Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed. Pharmacother., 139: 111708. Search in Google Scholar

Razazan A., Behravan J., Arab A., Barati N., Arabi L., Gholizadeh Z., Hatamipour M., Nikpoor A.R., Momtazi-Borojeni A.A., Mosaffa F., Ghahremani M.H., Jaafari M.R. (2017). Conjugated nanoliposome with the HER2/neu-derived peptide GP2 as an effective vaccine against breast cancer in mice xenograft model. PloS one, 12: e0185099. Search in Google Scholar

Ressel L., Puleio R., Loria G.R., Vannozzi I., Millanta F., Caracappa S., Poli A. (2013). HER-2 expression in canine morphologically normal, hyperplastic and neoplastic mammary tissues and its correlation with the clinical outcome. Res. Vet. Sci., 94: 299–305. Search in Google Scholar

Rivera P., Melin M., Biagi T., Fall T., Häggström J., Lindblad-Toh K., von Euler H. (2009). Mammary tumor development in dogs is associated with BRCA1 and BRCA2. Cancer Res., 69: 8770–8774. Search in Google Scholar

Rodel F., Sprenger T., Kaina B., Liersch T., Rodel C., Fulda S., Hehlgans S. (2012). Survivin as a prognostic/predictive marker and molecular target in cancer therapy. Curr. Med. Chem., 19: 3679–3688. Search in Google Scholar

Rodriguez C., Hansen G. (2014). Bioavailability and safety of caninized anti-CD52 monoclonal antibody in dogs with T-cell lymphoma. Proc, 34th Annual Veterinary Cancer Society Conference, St. Louis. Search in Google Scholar

Rue S.M., Eckelman B.P., Efe J.A., Bloink K., Deveraux Q.L., Lowery D., Nasoff M. (2015). Identification of a candidate therapeutic antibody for treatment of canine B-cell lymphoma. Vet. Immunol. Immunopathol., 164: 148–159. Search in Google Scholar

Rüegg C., Zaric J., Stupp R. (2003). Non-steroidal anti-inflammatory drugs and COX-2 inhibitors as anti-cancer therapeutics: hypes, hopes and reality. Ann. Med., 35: 476–487. Search in Google Scholar

Rutteman G.R. (1992). Contraceptive steroids and the mammary gland: Is there a hazard? Breast Cancer Res. Treat., 23: 29–41. Search in Google Scholar

Saba C.F., Rogers K.S., Newman S.J., Mauldin G.E., Vail D.M. (2007). Mammary gland tumors in male dogs. J. Vet. Intern. Med., 21: 1056–1059. Search in Google Scholar

Sadeghi Rad H., Monkman J., Warkiani M.E., Ladwa R., O’Byrne K., Rezaei N., Kulasinghe A. (2021). Understanding the tumor microenvironment for effective immunotherapy. Med. Res. Rev., 41: 1474–1498. Search in Google Scholar

Salas Y., Márquez A., Diaz D., Romero L. (2015). Epidemiological study of mammary tumors in female dogs diagnosed during the period 2002–2012: A growing animal health problem. PloS one, 10: e0127381. Search in Google Scholar

Sánchez-Bermúdez A. I., Sarabia-Meseguer M.D., García-Aliaga Á., Marín-Vera M., Macías-Cerrolaza J.A., Henaréjos P.S., Guardiola-Castillo V., Ayala-de la Peña F., Alonso-Romero J.L., Noguera-Velasco J.A., Ruiz-Espejo F. (2018). Mutational analysis of RAD51C and RAD51D genes in hereditary breast and ovarian cancer families from Murcia (southeastern Spain). Eur. J. Med. Gen., 61: 355–361. Search in Google Scholar

Sapierzyński R., Czopowicz M., Jagielski D. (2017). Metastatic lymphadenomegaly in dogs–cytological study. Polish J. Vet. Sci., 20: 731–736. Search in Google Scholar

Schneider B., Balbas-Martinez V., Jergens A.E., Troconiz I.F., Allenspach K., Mochel J.P. (2018). Model-based reverse translation between veterinary and human medicine: The one health initiative. CPT Pharmacomet. Syst. Pharmacol. 7: 65–68. Search in Google Scholar

Schneider R., Dorn C.R., Taylor D.O.N. (1969). Factors influencing canine mammary cancer development and postsurgical survival. J. Natl. Cancer Inst., 43: 1249–1261. Search in Google Scholar

Shah R., Rosso K., Nathanson S.D. (2014). Pathogenesis, prevention, diagnosis and treatment of breast cancer. World J. Clin. Oncol., 5: 283. Search in Google Scholar

Shariat S., Badiee A., Jalali S.A., Mansourian M., Yazdani M., Mortazavi S.A., Jaafari M.R. (2014). P5 HER2/neu-derived peptide conjugated to liposomes containing MPL adjuvant as an effective prophylactic vaccine formulation for breast cancer. Cancer Lett., 355: 54–60. Search in Google Scholar

Shosu K., Sakurai M., Inoue K., Nakagawa T., Sakai H., Morimoto M., Okuda M., Noguchi S., Mizuno T. (2016). Programmed cell death ligand 1 expression in canine cancer. In Vivo, 30: 195–204. Search in Google Scholar

Siegel R.L., Miller K.D., Jemal A. (2018). Cancer statistics, 2018. CA: A Cancer J. Clin., 68: 7–30. Search in Google Scholar

Simon D., Schoenrock D., Baumgärtner W., Nolte I. (2006). Postoperative adjuvant treatment of invasive malignant mammary gland tumors in dogs with doxorubicin and docetaxel. J. Vet. Intern. Med., 20: 1184–1190. Search in Google Scholar

Simon D., Schoenrock D., Nolte I., Baumgärtner W., Barron R., Mischke R. (2009). Cytologic examination of fine-needle aspirates from mammary gland tumors in the dog: diagnostic accuracy with comparison to histopathology and association with postoperative outcome. Vet. Clin. Pathol., 38: 521–528. Search in Google Scholar

Simpson A., Caballero O. (2014). Monoclonal antibodies for the therapy of cancer. BMC Proc., 8: 1–3. Search in Google Scholar

Singer J., Weichselbaumer M., Stockner T., Mechtcheriakova D., Sobanov Y., Bajna E., Wrba F., Horvat R., Thalhammer J.G., Willmann M., Jensen-Jarolim E. (2012). Comparative oncology: ErbB-1 and ErbB-2 homologues in canine cancer are susceptible to cetuximab and trastuzumab targeting. Mol. Immunol., 50: 200–209. Search in Google Scholar

Sleeckx N., De Rooster H., EJ V.K., Van Ginneken C., Van Brantegem L. (2011). Canine mammary tumours, an overview. Reprod. Domest. Anim., 46: 1112–1131. Search in Google Scholar

Son C.H., Bae J.H., Shin D.Y., Lee H.R., Choi Y.J., Jo W.S., Jung M.H., Kang C.D., Yang K., Park Y.S. (2014). CTLA-4 blockade enhances antitumor immunity of intratumoral injection of immature dendritic cells into irradiated tumor in a mouse colon cancer model. J. Immunother., 37: 1–7. Search in Google Scholar

Sontas B.H., Ozyogurtcu H., Gurel A., Ekici H. (2009). Evaluation of clinical and pathological characteristics of 155 canines with mammary tumours: a retrospective study. Arch. Med. Vet., 41: 53–59. Search in Google Scholar

Sorenmo K.U., Shofer F.S., Goldschmidt M.H. (2000). Effect of spaying and timing of spaying on survival of dogs with mammary carcinoma. J. Vet. Intern. Med., 14: 266–270. Search in Google Scholar

Sorenmo K.U., Rasotto R., Zappulli V., Goldschmidt M.H. (2011). Development, anatomy, histology, lymphatic drainage, clinical features, and cell differentiation markers of canine mammary gland neoplasms. Vet. Pathol., 48: 85–97. Search in Google Scholar

Soultani C., Patsikas M.N., Karayannopoulou M., Jakovljevic S., Chryssogonidis I., Papazoglou L., et al. (2017). Assessment of sentinel lymph node metastasis in canine mammary gland tumors using computed tomographic indirect lymphography. Vet. Rad. Ultrasound, 58: 186–196. Search in Google Scholar

Souza C.H.D.M., Toledo-Piza E., Amorin R., Barboza A., Tobias K.M. (2009). Inflammatory mammary carcinoma in 12 dogs: Clinical features, cyclooxygenase-2 expression, and response to piroxicam treatment. Can. Vet. J., 50: 506–510. Search in Google Scholar

Spoerri M., Guscetti F., Hartnack S., Boos A., Oei C., Balogh O., Nowaczyk R.M., Michel E., Reichler I.M., Kowalewski M.P. (2015). Endocrine control of canine mammary neoplasms: serum reproductive hormone levels and tissue expression of steroid hormone, prolactin and growth hormone receptors. BMC Vet. Res., 11: 1–10. Search in Google Scholar

Steven A., Seliger B. (2018). The role of immune escape and immune cell infiltration in breast cancer. Breast Care, 13: 16–21. Search in Google Scholar

Sultan F., Ganaie B.A. (2018). Comparative oncology: Integrating human and veterinary medicine. Open Vet. J., 8: 25–34. Search in Google Scholar

Swain S.M., Baselga J., Kim S.B., Ro J., Semiglazov V., Campone M., et al. (2015) Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N. Engl. J. Med., 372: 724–734. Search in Google Scholar

Szczubiał M., Łopuszyński W. (2011). Prognostic value of regional lymph node status in canine mammary carcinomas. Vet. Comp. Oncol., 9: 296–303. Search in Google Scholar

Tavares W.L., Lavalle G.E., Figueiredo M.S., Souza A.G., Bertagnolli A.C., Viana F.A., et al. (2010). Evaluation of adverse effects in tamoxifen exposed healthy female dogs. Acta Vet. Scand., 52: 1–6. Search in Google Scholar

Turriziani M., Fantini M., Benvenuto M., Izzi V., Masuelli L., Sacchetti P., Modesti A., Bei R. (2012). Carcinoembryonic antigen (CEA)-based cancer vaccines: recent patents and antitumor effects from experimental models to clinical trials. Recent Pat. Anti-Cancer Drug Discov., 7: 265–296. Search in Google Scholar

US National Library of Medicine Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT01693562 [accessed 20 February 2022]. Search in Google Scholar

US National Library of Medicine Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT00729664 [accessed 20 February 2022]. Search in Google Scholar

US National Library of Medicine Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT01375842 [accessed 20 February 2022]. Search in Google Scholar

US National Library of Medicine Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT00045932 [accessed 20 February 2022]. Search in Google Scholar

US National Library of Medicine Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT01772004 [accessed 20 February 2022]. Search in Google Scholar

US National Library of Medicine Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT01928394 [accessed 20 February 2022]. Search in Google Scholar

US National Library of Medicine Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT01714739 [accessed 20 February 2022]. Search in Google Scholar

US National Library of Medicine Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT02981303 [accessed 20 February 2022]. Search in Google Scholar

US National Library of Medicine Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT04176848 [accessed 20 February 2022]. Search in Google Scholar

US National Library of Medicine Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT04360941 [accessed 20 February 2022]. Search in Google Scholar

Üstün Alkan F., Üstüner O., Bakırel T., Cınar S., Erten G., Deniz G. (2012). The effects of piroxicam and deracoxib on canine mammary tumour cell line. Sci. World J., 2012: 1–8. Search in Google Scholar

Valdivia G., Alonso-Diez Á., Pérez-Alenza D., Peña L. (2021). From conventional to precision therapy in canine mammary cancer: A comprehensive review. Front. Vet. Sci., 8: 623800. Search in Google Scholar

Vascellari M., Capello K., Carminato A., Zanardello C., Baioni E., Mutinelli F. (2016). Incidence of mammary tumors in the canine population living in the Veneto region (Northeastern Italy): Risk factors and similarities to human breast cancer. Prevent. Vet. Med., 126: 183–189. Search in Google Scholar

Verneris M.R., Baker J., Edinger M., Negrin R.S. (2002). Studies of ex vivo activated and expanded CD8+ NK-T cells in humans and mice. J. Clin. Immunol., 22: 131–136. Search in Google Scholar

Wang Z., Chen J.Q., Liu J.L. (2014). COX-2 inhibitors and gastric cancer. Gastroenterol. Res. Prac., 2014: 132320. Search in Google Scholar

Wein L., Luen S.J., Savas P., Salgado R., Loi S. (2018). Checkpoint blockade in the treatment of breast cancer: current status and future directions. Br. J. Cancer, 119: 4–11. Search in Google Scholar

Weiner L.M., Surana R., Wang S. (2010). Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat. Rev. Immunol., 10: 317–327. Search in Google Scholar

Weir C., Oksa A., Millar J., Alexander M., Kynoch N., Walton-Weitz Z. et al. (2018). The safety of an adjuvanted autologous cancer vaccine platform in canine cancer patients. Vet. Sci., 5: 87. Search in Google Scholar

Yuen S., Yamada K., Goto M., Sawai K., Nishimura T. (2004). CTbased evaluation of axillary sentinel lymph node status in breast cancer: value of added contrast-enhanced study. Acta Radiologica, 45: 730–737. Search in Google Scholar

Zabielska-Koczywąs K., Lechowski R. (2017). The use of liposomes and nanoparticles as drug delivery systems to improve cancer treatment in dogs and cats. Molecules, 22: 2167. Search in Google Scholar

Zappulli V., Peña L., Rasotto R., Goldschmidt M., Gama A., Scruggs J., Kiupel M. (2019). Volume 2: Mammary Tumors. In: Kiupel M., editor. Surgical pathology of tumors of domestic animals. Davis-Thompson DVM Foundation. Washington, DC, USA, pp. 1–195. Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine