Otwarty dostęp

Dietary powder and molecular imprinted polymer nanoencapsulated sodium propionate to enhance growth performance, digestive enzymes activity, antioxidant defense, and mucosal immune response in African cichlid (Labidochromis lividus) fingerlings


Zacytuj

Abu Elala N.M., Ragaa N.M. (2015). Eubiotic effect of a dietary acidifier (potassium diformate) on the health status of cultured Oreochromis niloticus. J. Adv. Res., 6: 621–629. Search in Google Scholar

Aebi H. (1984). Catalase in vitro. Meth. Enzymol., 105: 121–126. Search in Google Scholar

Agouz H.M., Soltan M.A., Meshrf R.N. (2015). Effect of some organic acids and organic salt blends on growth performance and feed utilization of Nile tilapia (Oreochromis niloticus). Egypt. J. Nutr. Feeds, 18: 443–450. Search in Google Scholar

AOAC (2005). Official Methods of Analysis, 18th ed. AOAC International, Maryland, USA. Search in Google Scholar

Asadi E., Abdouss M., Leblanc R.M., Ezzati N., Wilson J.N., Kordestani D. (2016). Synthesis, characterization and in vivo drug delivery study of a biodegradable nano-structured molecularly imprinted polymer based on cross-linker of fructose. Polymer, 97: 226–237. Search in Google Scholar

Baruah K., Pal A.K., Sahu N.P., Jain K.K., Mukherjee S.C., Debnath D. (2005). Dietary protein level, microbial phytase, citric acid and their interactions on bone mineralization of Labeo rohita (Hamilton) juveniles. Aquac. Res., 36: 803–812. Search in Google Scholar

Baruah K., Norouzitallab P., Debnath D., Pal A.K., Sahu N.P. (2008). Organic acids as non-antibiotic nutraceuticals in fish and prawn feed. Aquacult. Health Int., 12: 4–6. Search in Google Scholar

Benhamed S., Guardiola F.A., Mars M., Esteban M.Á. (2014). Pathogen bacteria adhesion to skin mucus of fishes. Vet. Microbiol., 171: 1–12. Search in Google Scholar

Boland F.E., Lin R.C., Mulvaney T.R., Mcclure F.D., Johnston M.R. (1981). pH determination in acidified foods: collaborative study. J. Assoc. Off. Anal. Chem., 46: 332–336. Search in Google Scholar

Booth I.R., Stratford M. (2003). Acidulants and low pH. In: Food preservatives, Russel N.J., Gould G.W. (eds). Kluwer Academic/Plenum Publishers, New York, pp. 25–47. Search in Google Scholar

Busti S., Rossi B., Volpe E., Ciulli S., Piva A., Amico F.D., Soverini M., Candela M., Gatta P.P., Bonaldo A., Grilli E., Parma L. (2020). Effects of dietary organic acids and nature identical compounds on growth, immune parameters and gut microbiota of European seabass. Sci. Rep., 10: 21321. Search in Google Scholar

Cabello F.C., Godfrey H.P., Tomova A. (2013). Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ. Microbial., 15: 1917–1942. Search in Google Scholar

Cámara-Ruiz M., Carmen Balebona B., Moriñigo M.A., Esteban M.A. (2020). Probiotic Shewanella putrefaciens (SpPdp11) as a fish health modulator: a review. Microorganisms, 8: 1990. Search in Google Scholar

Cámara-Ruiz M., Cerezo I.M., Guardiola F.A., García-Beltrán J.M., Balebona M.C., Moriñigo M.Á., Esteban M.Á. (2021). Alteration of the immune response and the microbiota of the skin during a natural infection by Vibrio harveyi in European Seabass (Dicentrarchus labrax). Microorganisms, 9: 964. Search in Google Scholar

Castillo S., Rosales M., Pohlenz C., Gatlin D.M. (2014). Effects of organic acids on growth performance and digestive enzyme activities of juvenile red drum Sciaenops ocellatus. Aquaculture, 433: 6–12. Search in Google Scholar

Chen J., Wang Q., Liu C.M., Gong J. (2017). Issues deserve attention in encapsulating probiotics: critical review of existing literatures. Crit. Rev. Food Sci. Nut., 57: 1228–1238. Search in Google Scholar

Chiu S.T., Tsai R.T., Hsu J.P., Liu C.H., Cheng W. (2008). Dietary sodium alginate administration to enhance the non-specific immune responses, and disease resistance of the juvenile grouper Epinephelus fuscoguttatus. Aquaculture, 27: 66–72. Search in Google Scholar

Chow E.P.Y., Liong K.H., Schoeters E. (2017). Dietary encapsulated butyric acid (Butipearl™) and microemulsified carotenoids (Quantum GLO™ Y) on the growth, immune parameters and their synergistic effect on pigmentation of hybrid Catfish (Clarias macrocephalus × Clarias gariepinus). J. Fish. Aquac., 8: 2. Search in Google Scholar

Chowdhury M.A.K., Song H., Liu Y., Bunod J.D., Dong X.H. (2021). Effects of microencapsulated organic acid and their salts on growth performance, immunity and disease resistance of Pacific White Shrimp Litopenaeus vannamei. Sustainability, 13: 7791. Search in Google Scholar

Cunliffe D., Kirby A., Alexander C. (2005). Molecularly imprinted drug delivery systems. Adv. Drug. Deliv., 57: 1836–1853. Search in Google Scholar

Da Silva B.C., Vieira F.N., Mourino J.L.P., Bolivar N., Seiffert W.Q. (2015). Butyrate and propionate improve the growth performance of Litopenaeus vannamei. Aquac. Res., 4: 7. Search in Google Scholar

Dawood M.A.O., Koshio S., Esteban M.A. (2018). Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev. Aquacult., 10: 950–974. Search in Google Scholar

Defoirdt T., Boon N., Sorgeloos P., Verstraete W., Bossier P. (2009). Short-chain fatty acids and poly-β-hydroxyalkanoates: (New) Biocontrol agents for a sustainable animal production. Biotech. Advan., 27: 680–685. Search in Google Scholar

Erlanger B.F., Kokowsky N., Cohen W. (1961). The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophys., 95: 271–278. Search in Google Scholar

Fabay R.V., Serrano A.E. Jr, Alejos M.S., Fabay J.V. (2022). Effects of dietary acidification and acid source on fish growth and feed efficiency (Review). World Acad. Sci. J., 4: 21. Search in Google Scholar

Gao L., Wang J., Li X., Yan Y., Li C., Pan J. (2014). A core-shell surface magnetic molecularly imprinted polymers with fluorescence for λ-cyhalothrin selective recognition. Anal. Bioanal. Chem., 406: 7213–7220. Search in Google Scholar

Gao Y., Storebakken T., Shearer K.D., Penn M., Øverland M. (2011). Supplementation of fishmeal and plant-protein based diets for rainbow trout with a mixture of sodium formate and butyrate. Aquaculture, 211: 233–240. Search in Google Scholar

Gawlicka A., Parent B., Horn M.H., Ross N., Opstad I., Torrissen O.J. (2000). Activity of digestive enzymes in yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus): indication of readiness for first feeding. Aquaculture, 184: 303–314. Search in Google Scholar

Gómez G.D., Balcázar J.L. (2008). A review on the interactions between gut microbiota and innate immunity of fish. FEMS Microbiol. Immunol., 52: 145–154. Search in Google Scholar

He W., Rahimnejad S., Wang L., Song K., Lu K., Zhang C. (2017). Effects of organic acids and essential oils blend on growth, gut microbiota, immune response and disease resistance of Pacific white shrimp (Litopenaeus vannamei) against Vibrio parahaemolyticus. Fish Shellfish Immunol., 70: 164–173. Search in Google Scholar

Hidalgo M.C., Urea E., Sanz A. (1999). Comparative study of digestive enzymes in fish with different nutritional habits: Proteolytic and amylase activities. Aquaculture, 170: 267–283. Search in Google Scholar

Hoseinifar S.H., Zoheiri F., Caipang C.M. (2016). Dietary sodium propionate improved performance, mucosal and humoral immune responses in Caspian white fish (Rutilus frisii kutum) fry. Fish Shellfish Immunol., 55: 523–528. Search in Google Scholar

Hoseinifar S.H., Yousefi S., Van Doan H., Ashouri G., Gioacchini G., Maradonna F., Carnevali O. (2020). Oxidative stress and antioxidant defense in fish: the implications of probiotic, prebiotic, and synbiotics. Rev. Fish. Sci. Aquac., 29: 20. Search in Google Scholar

Hossain M.A., Pandey A., Satoh S. (2007). Effects of organic acids on growth and phosphorus utilization in red sea bream Pagrus major. Fish Sci., 73: 1309–1317. Search in Google Scholar

Huang F., Yan A., Mu S., Wang X. (1999). The protease and amylase of Hypophthalmichthy molitrix and Aristichthys nobilis. J. Fish. Sci. China, 6: 14–17. Search in Google Scholar

Huang X.J., Choi Y.K., Im H.S., Yarimaga O., Yoon E., Kim H.S. (2006). Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors, 6: 756–782. Search in Google Scholar

Jaiswal L., Rakkit S., Pochin K., Jaisamut P., Tanthana C., Tanmanee N. (2015). A thalidomide templated molecularly imprinted polymer that promotes a biologically active chiral entity tagged in colon carcinoma cells and protein-related immune activation. Process Biochem., 50: 2035–2050. Search in Google Scholar

Jindal R., Sinha R., Brar P. (2018). Evaluating the protective efficacy of Silybum marianum against deltamethrin induced hepatotoxicity in piscine model. Environ. Toxicol. Pharmacol., 66: 62–68. Search in Google Scholar

Kakavand M., Shekarabi S.P.H., Mehrgan M.S., Islami H.R. (2021). Potassium diformate in the diet of sterlet sturgeon (Acipenser ruthenus): Zootechnical performance, humoral and skin mucosal immune responses, growth-related gene expression and intestine morphology. Aquac. Nutr., 27: 2392–2404. Search in Google Scholar

Kalantarian S.H., Mirzargar S.S., Rahmati-Holasoo H., Sadeghinezhad J., Mohammadian T. (2020). Effects of oral administration of acidifier and probiotic on growth performance, digestive enzymes activities and intestinal histomorphology in Salmo trutta caspius (Kessler, 1877). Iran. J. Fish. Sci., 19: 1532–1555. Search in Google Scholar

Khalil I., Yehye W.A., Etxeberria A.E., Alhadi A.A., Dezfooli S.M., Julkapli N.B.M., Basirun W.J., Seyfoddin A. (2020). Nanoantioxidants: recent trends in antioxidant delivery applications. Antioxidants, 9: 24. Search in Google Scholar

Kumari A., Yadav S.K., Pakade Y.B., Singh B., Yadav S.C. (2010). Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf. B., 80: 184–192. Search in Google Scholar

Li Z., Jiang H., Xu C., Gu L. (2014). A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocoll., 1–12. Search in Google Scholar

Liu W., Yang Y., Zhang J., Gatlin D.M., Ringo E., Zhou Z. (2014). Effects of dietary microencapsulated sodium butyrate on growth, intestinal mucosal morphology, immune response and adhesive bacteria in juvenile common carp (Cyprinus carpio) pre-fed with or without oxidised oil. Br. J. Nutr., 112: 15–29. Search in Google Scholar

Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193: 265–275. Search in Google Scholar

Luliski P. (2013). Molecular imprinted polymers as the future drug delivery devices. Acta Pol. Pharm., 70: 601–609. Search in Google Scholar

Marklund S., Marklund G. (1974). Involvement of superoxide anion radical in autoxidation of pyrogallol and a convenient assay of superoxide dismutase. Eur. J. Biochem., 46: 469–474. Search in Google Scholar

Marshall B.M., Levy S.B. (2011). Food animals and antimicrobials: impacts on human health. Clin. Microbiol. Rev., 24: 718–733. Search in Google Scholar

Martínez-Álvarez R.M., Morales A.E., Sanz A. (2005). Antioxidant defenses in fish: Biotic and abiotic factors. Rev. Fish Biol. Fish., 15: 75–88. Search in Google Scholar

Maslowski K.M., Mackay C.R. (2011). Diet, gut microbiota and immune responses. Nat. Immunol., 12: 5–9. Search in Google Scholar

McClements D.J., Jafari S.M. (2018). General aspects of nanoemulsions and their formulation. In: Nanoemulsions: formulation, applications, and characterization, Jafari S.M., McClements D.J. (eds). Academic Press, pp. 3–20. Search in Google Scholar

Metón I., Salgado M.C., Anemaet I.G., González J.D., Fernández F., Baanante I.V. (2015). Alanine aminotransferase: A target to improve utilisation of dietary nutrients in aquaculture. Int. J. Recent Adv., pp. 133–148. Search in Google Scholar

Morken T., Kraugerud O.F., Barrows F.T., Sørensen M., Storebakken T., Øverland M. (2011). Sodium diformate and extrusion temperature affect nutrient digestibility and physical quality of diets with fish meal and barley protein concentrate for rainbow trout (Oncorhynchus mykiss). Aquaculture, 317: 138–148. Search in Google Scholar

Ng W.K., Koh C.B. (2016). The utilization and mode of action of organic acids in the feeds of cultured aquatic animals. Rev. Aquac., 9: 342–368. Search in Google Scholar

Nie L., Zhou Q.J., Qiao Y., Chen J. (2017). Interplay between the gut microbiota and immune responses of ayu (Plecoglossus altivelis) during Vibrio anguillarum infection. Fish Shellfish Immunol., 68: 479–487. Search in Google Scholar

Nigam A.K., Kumari U., Mittal A.K. (2012). Comparative analysis of innate immune parameters of the skin mucous secretions from certain freshwater teleosts, inhabiting different ecological niches. Fish Physiol. Biochem., 38: 1245–1256. Search in Google Scholar

Omosowone O.O., Dada A.A., Adeparusi E.O. (2018). Comparison of dietary butyric acid supplementation effect on growth performance and body composition of Clarias gariepinus and Oreochromis niloticus fingerlings. Iran. J. Fish. Sci., 17: 403–412. Search in Google Scholar

Opiyo M.A., Marijani E., Muendo P., Odede R., Leschen W., Charo-Karisa H.A. (2018). Review of aquaculture production and health management practices of farmed fish in Kenya. Int. J. Vet. Sci. Med., 6: 141–148. Search in Google Scholar

Palaksha K.J., Shin G.W., Kim Y.R., Jung T.S. (2008). Evaluation of non-specific immune components from the skin mucus of olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol., 24: 479–488. Search in Google Scholar

Paramera E.I., Konteles S.J., Karathanos V.T. (2011). Stability and release properties of curcumin encapsulated in Saccharomyces cerevisiae, ß-cyclodextrin and modified starch. Food Chem., 125: 913–922. Search in Google Scholar

Piletsky S., Turner A. (2006). A new generation of chemical sensors based on MIPs. In: Molecular imprinting of polymers, Piletsky S.A., Turner A.P.F. (eds). Landes Bioscience, Georgetown, TX, USA, pp. 64–79. Search in Google Scholar

Piva A., Pizzamiglio V., Mauro M., Tedeshchi M., Piva G. (2007). Lipid microencapsulation allows slow release of organic acids and natural identical flavors along the swine intestine. Anim. Sci., 85: 486–493. Search in Google Scholar

Poncelet D. (2006). Microencapsulation: fundamentals, methods and applications. Surf. Chem. Biomed. Environ. Sci., 228: 23–34. Search in Google Scholar

Puoci F., Cirillo G., Curcio M., Parisi O.I., Iemma F., Picci N. (2011). Molecularly imprinted polymers in drug delivery: state of art and future perspectives. Expert Opin. Drug Deliv., 8: 1379–1393. Search in Google Scholar

Qian M., Cai D., Verhey K., Tsai B. (2009). A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection. PLoS Pathog., 5: e1000465. Search in Google Scholar

Raja K., Aanand P., Padmavathy S., Sampathkumar J.S. (2019). Present and future market trends of Indian ornamental fish sector. Int. J. Fish. Aquat. Sci., 7: 06–15. Search in Google Scholar

Ram R.N., Sathyanesan A.G. (1985). Mercuric chloride, cythion and ammonium sulfate induced changes in the brain, liver and ovarian alkaline phosphatase content in the fish Channa punctatus. Envir. Ecol., 3: 263–268. Search in Google Scholar

Rashmeei M., Shekarabi S.P.H., Mehrgan M.S., Paknejad H. (2020). Stimulatory effect of dietary chasteberry (Vitex agnus-castus) extract on immunity, some immune-related gene expression, and resistance against Aeromonas hydrophila infection in goldfish (Carassius auratus). Fish Shellfish Immunol., 107: 129–136. Search in Google Scholar

Rastiannasab A., Afsharmanesh S., Rahimi R., Sharifian I. (2016). Alternations in the liver enzymatic activity of common carp, Cyprinus carpio in response to parasites, Dactylogyrus spp. and Gyrodactylus spp. J. Parasit. Dis., 40: 1146–1149. Search in Google Scholar

Reitman S., Frankel S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 28: 56–63. Search in Google Scholar

Rico A., Satapornvanit K., Haque M.M., Min J., Nguyen P.T., Telfer T.C., van den Brink P.J. (2012). Use of chemicals and biological products in Asian aquaculture and their potential environmental risks: a critical review. Rev Aquac., 4: 75–93. Search in Google Scholar

Rieux A.D., Fievez V., Garinot M., Schneider Y.-J., Preat V. (2006). Nanoparticles s potential oral delivery systems of proteins and vaccines: a mechanistic approach. J. Control Rel., 116: 1–27. Search in Google Scholar

Romano N., Koh C.B., Ng W.K. (2014). Dietary microencapsulated organic acids blend enhances growth, phosphorus utilization, immune response, hepatopancreatic integrity and resistance against Vibrio harveyi in white shrimp, Litopenaeus vannamei. Aquaculture, doi: 10.1016/j.aquaculture.2014.09.037 Search in Google Scholar

Rombout J.H.W.M., Abelli L., Picchietti S., Scapigliati G., Kiron V. (2011). Teleost intestinal immunology. Fish Shellfish Immunol., 31: 616–626. Search in Google Scholar

Safari O., Paolucci M. (2018). Effect of in vitro selected synbiotics (galactooligosaccharide and mannanoligosaccharide with or without Enterococcus faecalis) on growth performance, immune responses and intestinal microbiota of juvenile narrow clawed crayfish, Astacus leptodactylus leptodactylus Eschscholtz, 1823. Aquac. Nutr., 24: 247–259. Search in Google Scholar

Safari O., Sarkheil M. (2018). Dietary administration of eryngii mushroom (Pleurotus eryngii) powder on haemato-immunological responses, bactericidal activity of skin mucus and growth performance of koi carp fingerlings (Cyprinus carpio koi). Fish Shellfish Immunol., 80: 505–513. Search in Google Scholar

Safari R., Hoseinifar S.H., Kavandi M. (2016). Modulation of antioxidant defence and immune response in zebra fish (Danio rerio) using dietary sodium propionate. Fish Physiol. Biochem., 42: 1733–1739. Search in Google Scholar

Safari R., Hoseinifar S.H., Nejadmoghadam S., Khalili M. (2017). Non-specific immune parameters, immune, antioxidant and growth-related genes expression of common carp (Cyprinus carpio L.) fed sodium propionate. Aquac. Res., 48: 4470–4478. Search in Google Scholar

Safari O., Paolucci M., Motlagh H.M. (2021). Effect of dietary encapsulated organic salts (Na-acetate, Na-butyrate, Na-lactate and Na-propionate) on growth performance, haemolymph, antioxidant and digestive enzyme activities and gut microbiota of juvenile narrow clawed crayfish, Astacus leptodactylus Eschscholtz, 1823. Aquac. Nutr., 27: 91–104. Search in Google Scholar

Sajeevan T., Philip R., Singh I.B. (2009). Dose/frequency: a critical factor in the administration of glucan as immunostimulant to Indian white shrimp Fenneropenaeus indicus. Aquaculture, 287: 248–252. Search in Google Scholar

Sarkheil M., Kordestani D., Safari O. (2021). Dietary supplementation with powder and gelatine micro and nanoencapsulated sodium propionate: Influence on growth performance, digestive and antioxidant enzymes and mucosal immunity of koi carp (Cyprinus carpio koi). Aquac. Nutr., 27: 2251–2266. Search in Google Scholar

Senapati S., Mahanta A.K., Kumar S., Maiti P. (2018). Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther., 3: 7. Search in Google Scholar

Shekarabi S.P.H., Mostafavi Z.S., Mehrgan M.S., Islami H.R. (2021). Dietary supplementation with dandelion (Taraxacum officinale) flower extract provides immunostimulation and resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol., 118: 180–187. Search in Google Scholar

Shekarabi S.P.H., Ghodrati M., Dawood M.A.O., Masouleh A.S., Roudbaraki A.F. (2022). The multi-enzymes and probiotics mixture improves the growth performance, digestibility, intestinal health, and immune response of Siberian sturgeon (Acipenser baerii). Ann. Anim. Sci., 22: 1063–1072. Search in Google Scholar

Silva B.C., Vieira F.N., Mouriño J.L.P., Bolivar N., Seiffert W.Q. (2016). Butyrate and propionate improve the growth performance of Litopenaeus vannamei. Aquac. Res., 47: 612–623. Search in Google Scholar

Siwicki A.K., Anderson D.P., Rumsey G.L. (1994). Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet. Immunol. Immunopathol., 41: 125–139. Search in Google Scholar

Smith M.P. (2000). Lake Malawi Cichlids. Barron’s Educational Series, Inc., New York, USA. Search in Google Scholar

Sotoudeh E., Sangari M., Bagheri D., Morammazi S., Torfi Mozanzadeh M. (2020). Dietary organic acid salts mitigate plant protein induced inflammatory response and improve humoral immunity, antioxidative status and digestive enzyme activities in yellowfin seabream, Acanthopagrus latus. Aquac. Nutr., 26: 1669–1680. Search in Google Scholar

Su X., Li X., Leng X., Tan C., Liu B., Chai X. (2014). The improvement of growth, digestive enzyme activity and disease resistance of white shrimp by the dietary citric acid. Aquac. Int., 22: 1823–1835. Search in Google Scholar

Subramanian S., MacKinnon S.L., Ross N.W. (2007). A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 148: 256–263. Search in Google Scholar

Tian L., Zhou X.Q., Jiang W.D., Liu Y., Wu P., Jiang J., Kuang S.Y., Tang L., Tang W.N., Zhang Y.A., Xie F., Feng L. (2017). Sodium butyrate improved intestinal immune function associated with NFkB and p38MAPK signalling pathways in young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol., 66: 548–563. Search in Google Scholar

Topping D.L., Clifton P.M. (2001). Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev., 81: 1031–1064. Search in Google Scholar

Van der Wielen P. (2002). Dietary strategies to influence the gastrointestinal microflora of young animals and its potential to improve intestinal health. In: Nutrition and health of the gastrointestinal tract, Blok M.C., Vahl H.A., De Lange L., Van De Braak AE., Hemke G., Hessing M. (eds). Wageningen Academic Publishers, The Netherlands, pp. 37–60. Search in Google Scholar

Van Doan H., Hoseinifar S.H., Ringø E., Esteban M.A., Dadar M., Dawood M.A.O., Faggio C. (2020). Host-associated probiotics: a key factor in sustainable aquaculture. Rev. Fish Sci. Aquac., 28: 16–42. Search in Google Scholar

Wassef E.A., Saleh N.E., Abdel-Meguid N.E., Barakat K.M., Abdel-Mohsen H.H., El-Bermawy N.M. (2019). Sodium propionate as a dietary acidifier for European seabass (Dicentrarchus labrax) fry: immune competence, gut microbiome, and intestinal histology benefits. Aquac. Int., 28: 1–17. Search in Google Scholar

Wongsasak U., Chaijamrus S., Kumkhong S., Boonanuntanasarn S. (2014). Effects of dietary supplementation with b-glucan and synbiotics on immune gene expression and immune parameters under ammonia stress in Pacific white shrimp. Aquaculture, 436: 179–187. Search in Google Scholar

Worthington C. (1991). Worthington enzyme manual related biochemical, Freehold, New Jersey. Search in Google Scholar

Wuertz S., Schroeder A., Wanka K.M. (2021). Probiotics in fish nutrition-long-standing household remedy or native nutraceuticals?. Water, 13: 1348. Search in Google Scholar

Yano T. (1992). Assays of hemolytic complement activity. Techniq. Fish Immunol., pp. 131–141. Search in Google Scholar

Zaidi S.B. (2016). Molecular imprinted polymers as drug delivery vehicles. Drug Deliv., 23: 2262–2271. Search in Google Scholar

Zhou Z., Ding Z., Huiyuan L. (2007). Effects of dietary short-chain fructooligosaccharides on intestinal microflora, survival, and growth performance of juvenile white shrimp, Litopenaeus vannamei, J. World Aquac. Soc., 38: 296–301. Search in Google Scholar

Zhu Y., Yang L., Huang D., Zhu Q. (2017). Molecularly imprinted nanoparticles and their releasing properties, bio-distribution as drug carriers. Asian J. Pharm. Sci., 12: 172–178. Search in Google Scholar

Zikic R.V., Stajn S., Pavlovic Z., Ognjanovic B.I., Saicic S. (2001). Activities of superoxide dismutase and catalase in erythrocyte and plasma transaminases of goldfish (Carassius auratus gibelio Bloch.) exposed to cadmium. Physiol. Res., 50: 105–111. Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine