1. bookTom 23 (2023): Zeszyt 1 (January 2023)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2300-8733
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Open Access

Meta-Analysis of the Global Prevalence of Enterococcus spp. in Foods: Antibiotic Resistance Profile of Enterococcus faecalis and Enterococcus faecium

Data publikacji: 27 Jan 2023
Tom & Zeszyt: Tom 23 (2023) - Zeszyt 1 (January 2023)
Zakres stron: 107 - 120
Otrzymano: 23 Feb 2022
Przyjęty: 09 Sep 2022
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2300-8733
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

Abriouel H., Omar N.B., Molinos A.C., López R.L., Grande M.J., Martínez-Viedma P., Ortega E., Cañamero M.M., Galvez A. (2008). Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples. Int. J. Food Microbiol., 123: 38–49. Search in Google Scholar

Acurcio L.B., Souza M.R., Nunes A.C., Oliveira D.L.S., Sandes S.H.C., Alvim L.B. (2014). Isolation, enumeration, molecular identification and probiotic potential evaluation of lactic acid bacteria isolated from sheep milk. Bras. Med. Vet. Zootec., 66: 940–948. Search in Google Scholar

Alzahrani O.M., Fayez M., Alswat A.S., Alkafafy M., Mahmoud S.F., Al-Marri T., Almuslem A., Ashfaq H., Yusuf S. (2022). Antimicrobial resistance, biofilm formation, and virulence genes in Enterococcus species from small backyard chicken flocks. Antibiotics, 11: 380. Search in Google Scholar

Ananchaipattana C., Hosotani Y., Kawasaki S., Pongswat S., Latiful B.M., Isobe S., Inatsu Y. (2012). Bacterial contamination of soybean curd (tofu) sold in Thailand. Food Sci. Technol. Res., 18: 843–848. Search in Google Scholar

Anderson A.C., Jonas D., Huber I., Karygianni L., Wölber J., Hellwig E., Arweiler N., Vach K., Wittmer A., Al-Ahmad A. (2016). Enterococcus faecalis from food, clinical specimens, and oral sites: prevalence of virulence factors in association with biofilm formation. Front. Microbiol., 6: 1534. Search in Google Scholar

Atiyah A.S., Alkhafaji M.H. (2020). Molecular screening of the entA gene of Enterococcus faecium isolated from food and clinical sources. Res. J. Biotechnol., 14: 1–7. Search in Google Scholar

Ayobami O., Willrich N., Reuss A., Eckmanns T., Markwart R. (2020). The ongoing challenge of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in Europe: an epidemiological analysis of bloodstream infections. Emerg. Microbes Infec., 9: 1180–1193. Search in Google Scholar

Başbülbül G., Özteber M., Biyik H.H. (2015). Antibiotic resistance in lactic acid bacteria isolated from fermented dairy products and boza. J. Microbiol. Biotechnol. Food Sci., 4: 513–517. Search in Google Scholar

Borenstein M., Higgins J.P. (2013). Meta-analysis and subgroups. Prev Sci., 14: 134–143. Search in Google Scholar

Boss R., Overesch G., Baumgartner A. (2016). Antimicrobial resistance of Escherichia coli, Enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus from raw fish and seafood imported into Switzerland. J. Food Prot.,79: 1240–1246. Search in Google Scholar

Byappanahalli M.N., Nevers M.B., Korajkic A., Staley Z.R., Harwood V.J. (2012). Enterococci in the environment. Microbiol. Mol. Biol. Rev., 76: 685–706. Search in Google Scholar

Camargo C.H., Bruder-Nascimento A., Lee S.H.I., Fernandes Júnior A., Kaneno R., Rall V.L.M. (2014). Prevalence and phenotypic characterization of Enterococcus spp. isolated from food in Brazil. Braz. J. Microbiol., 45: 111–115. Search in Google Scholar

Carminati D., Tidona F., Fornasari M.E., Rossetti L., Meucci A., Giraffa G. (2014). Biotyping of cultivable lactic acid bacteria isolated from donkey milk. Lett. Appl. Microbiol., 59: 299–305. Search in Google Scholar

Cervinkova D., Vlkova H., Borodacova I., Makovcova J., Babak V., Lorencova A., Vrtkova I., Marosevic D., Jaglic Z. (2013). Prevalence of mastitis pathogens in milk from clinically healthy cows. Vet. Med., 58: 567–575. Search in Google Scholar

Cetinkaya F., Muş T.E., Soyutemiz G.E., Cibik R. (2013). Prevalence and antibiotic resistance of vancomycin-resistant enterococci in animal originated foods. Turk. J. Vet. Anim. Sci., 37: 588–593. Search in Google Scholar

Chajęcka-Wierzchowska W., Zadernowska A., Nalepa B., Laniewska-Trokenheim L. (2012). Occurrence and antibiotic resistance of enterococci in ready-to-eat food of animal origin. Afr. J. Microbiol. Res., 6: 6773–6780. Search in Google Scholar

Chajęcka-Wierzchowska W., Zadernowska A., Łaniewska-Trokenheim Ł. (2016). Virulence factors, antimicrobial resistance and biofilm formation in Enterococcus spp. isolated from retail shrimps. LWT., 69: 117–122. Search in Google Scholar

Chajęcka-Wierzchowska W., Zarzecka U., Zadernowska A. (2021). Enterococci isolated from plant-derived food – Analysis of antibiotic resistance and the occurrence of resistance genes. LWT-Food Sci. Technol., 139: 110549. Search in Google Scholar

Chingwaru W., Mpuchane S.F., Gashe B.A. (2003). Enterococcus faecalis and Enterococcus faecium isolates from milk, beef, and chicken and their antibiotic resistance. J. Food Prot., 66: 931–936. Search in Google Scholar

Ciftci A., Findik A., Ica T., Bas B., Onuk E.E., Güngördü S. (2009). Slime production and antibiotic resistance of Enterococcus faecalis isolated from arthritis in chickens. J. Vet. Med. Sci., 71: 849–853. Search in Google Scholar

Citak S., Mendi A., Orhan S. (2005). Incidence, antibiotic resistance and some technological properties of Enterococcus species isolated from raw milk and white cheese samples. Arch. Lebensmittelhygiene, 56: 80–83. Search in Google Scholar

Dapkevicius M.D.L.E., Sgardioli B., Câmara S., Poeta P., Malcata F.X. (2021). Current trends of Enterococci in dairy products: a comprehensive review of their multiple roles. Foods, 10: 821. Search in Google Scholar

Doğan M., Tekiner İ.H. (2019). Assessment of probiotic properties of lactic acid bacteria from traditional sourdoughs for bread-making in Turkey. J. Appl. Food Technol., 6: DOI:10.17728/jaft.5662.10.17728/jaft.5662 Search in Google Scholar

Drahovská H., Slobodníková L., Kocíncová D., Seman M., Končeková R., Trupl J., Turňa J. (2004). Antibiotic resistance and virulence factors among clinical and food enterococci isolated in Slovakia. Folia Microbiol., 49: 763–768. Search in Google Scholar

Ducková M.K.M.Č.V. (2007). Occurrence, isolation and antibiotic resistance of Enterococcus species isolated from raw pork, beef and poultry. J. Food Nutr. Res.,46: 91–95. Search in Google Scholar

Ducková V., Čanigová M., Kročko M. (2021). Enterococci and their resistance to antibiotics and thyme essential oil. J. Microbiol. Biotechnol. Food Sci., 1–4. Search in Google Scholar

Elmalı M., Can H.Y. (2018). The prevalence, vancomycin resistance and virulence gene profiles of Enterococcus species recovered from different foods of animal origin. Vet. Arh., 88: 111–124. Search in Google Scholar

El-Tawab A., Awad A., Elhofy F.I., Mahmoud M.A., Amin E.K. (2019). Genotyping and resistance genes of Enterococcus faecalis isolated from different food sources in Egypt. Benha Med. J., 37: 149–153. Search in Google Scholar

El-Zamkan M.A., Mohamed H.M. (2021). Antimicrobial resistance, virulence genes and biofilm formation in Enterococcus species isolated from milk of sheep and goat with subclinical mastitis. PloS One.,16(11):e0259584. Search in Google Scholar

Emaneini M., Hosseinkhani F., Jabalameli F., Nasiri M.J., Dadashi M., Pouriran R., Beigverdi R. (2016). Prevalence of vancomycinresistant Enterococcus in Iran: a systematic review and meta-analysis. Eur. J. Clin. Microbiol. Infect. Dis., 35: 1387–1392. Search in Google Scholar

Espíndola L.C.P., do Nascimento M.V.M., do Souto R.M., Colombo A.P.V. (2021). Antimicrobial susceptibility and virulence of Enterococcus spp. isolated from periodontitis associated subgingival biofilm. J. Periodontol., 92: 1588–1600. Search in Google Scholar

Fracalanzza S.A.P., Scheidegger E.M.D., Santos P.F.D., Leite P.C., Teixeira L.M. (2007). Antimicrobial resistance profiles of enterococci isolated from poultry meat and pasteurized milk in Rio de Janeiro, Brazil. Memórias do Instituto Oswaldo Cruz, 102: 853–859. Search in Google Scholar

Frahm E., Obst U. (2003). Application of the fluorogenic probe technique (TaqMan PCR) to the detection of Enterococcus spp. and Escherichia coli in water samples. J. Microbiol. Methods, 52: 123–131. Search in Google Scholar

García-Cano I., Serrano-Maldonado C.E., Olvera-García M., Delgado-Arciniega E., Peña-Montes C., Mendoza-Hernández G., Quirasco M. (2014). Antibacterial activity produced by Enterococcus spp. isolated from an artisanal Mexican dairy product, Cotija cheese. LWT, 59: 26–34. Search in Google Scholar

García-Solache M., Rice L.B. (2019). The Enterococcus: a model of adaptability to its environment. Clin. Microbiol Rev., 32.10.1128/CMR.00058-18643112830700430 Search in Google Scholar

Getachew Y., Hassan L., Zakaria Z., Abdul Aziz S. (2013). Genetic variability of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis isolates from humans, chickens, and pigs in Malaysia. Appl. Environ. Microbiol.,79: 4528–4533. Search in Google Scholar

Guerrero-Ramos E., Cordero J., Molina-González D., Poeta P., Igrejas G., Alonso-Calleja C., Capita R. (2016). Antimicrobial resistance and virulence genes in enterococci from wild game meat in Spain. Food Microbiol., 53: 156–164. Search in Google Scholar

Güldas H.E., Kececi A.D., Cetin E.S., Ozturk T., Kaya B.Ü. (2016). Evaluation of antimicrobial efficacy of cetrimide and Glycyrrhiza glabra L. extract against Enterococcus faecalis biofilm grown on dentin discs in comparison with NaOCl. Dent. Mater. J., 35: 721–727. Search in Google Scholar

Hajikhani R., Beyatli Y., Aslim B. (2007). Antimicrobial activity of enterococci strains isolated from white cheese. Int. J. Dairy Technol., 60: 105–108. Search in Google Scholar

Hammad A.M., Hassan H.A., Shimamoto T. (2015). Prevalence, antibiotic resistance and virulence of Enterococcus spp. in Egyptian fresh raw milk cheese. Food Control., 50: 815–820. Search in Google Scholar

Hanchi H., Mottawea W., Sebei K., Hammami R. (2018). The genus Enterococcus: between probiotic potential and safety concern an update. Front Microbiol., 9: 1791. Search in Google Scholar

Harada T., Mito Y., Otsuki K., Murase T. (2004). Resistance to gentamicin and vancomycin in enterococcal strains isolated from retail broiler chickens in Japan. J. Food Prot., 67: 2292–2295. Search in Google Scholar

Hidano A., Yamamoto T., Hayama Y., Muroga N., Kobayashi S., Nishida T., Tsutsui T. (2015). Unraveling antimicrobial resistance genes and phenotype patterns among Enterococcus faecalis isolated from retail chicken products in Japan. PloS One, 10(3), e0121189.10.1371/journal.pone.0121189436315025781022 Search in Google Scholar

Higuita N.I.A., Huycke M.M. (2014). Enterococcal disease, epidemiology, and implications for treatment. Enterococci: From commensals to leading causes of drug resistant infection. https://www.ncbi.nlm.nih.gov/books/NBK190429/. Search in Google Scholar

Igbinosa E.O., Beshiru A. (2019). Antimicrobial resistance, virulence determinants, and biofilm formation of Enterococcus species from ready-to-eat seafood. Front. Microbiol., 10: 728. Search in Google Scholar

Jeon A.R., Lee J.H., Mah J.H. (2018). Biogenic amine formation and bacterial contribution in Cheonggukjang, a Korean traditional fermented soybean food. LWT, 92: 282–289. Search in Google Scholar

Jurkovič D., Križková L., Sojka M., Takáčová M., Dušinský R., Krajčovič J., Vandamme P., Vancanneyt M. (2007). Genetic diversity of Enterococcus faecium isolated from Bryndza cheese. Int. J. Food Microbiol, 116: 82–87. Search in Google Scholar

Keeratipibul S., Oupaichit T., Techaruwichit P. (2009). Contamination profiles of Escherichia coli and enterococci in steamed chicken meat products. J. Food Prot., 72: 1821–1829. Search in Google Scholar

Kim E.B., Jin G.D., Lee J.Y., Choi Y.J. (2016). Genomic features and niche-adaptation of Enterococcus faecium strains from Korean soybean-fermented foods. PLoS One, 11(4), e015327.10.1371/journal.pone.0153279482923627070419 Search in Google Scholar

Kim H.W., Park S.M., Seo G.H., Cho T.J., Yu H.Y., Kim S.H., Hwang J.J., Cho C., Rhee M.S. (2020). Virulence patterns and prevalence of seven Enterococcus species isolated from meats and leafy vegetables in South Korea. Food Control., 108: 106867. Search in Google Scholar

Kim M.H., Moon D.C., Kim S.J., Mechesso A.F., Song H.J., Kang H.Y., Choi J.Y., Yoon S.S., Lim S.K. (2021). Nationwide surveillance on antimicrobial resistance profiles of Enterococcus faecium and Enterococcus faecalis isolated from healthy food animals in South Korea, 2010 to 2019. Microorganisms, 9: 925. Search in Google Scholar

Klaharn K., Pichpol D., Meeyam T., Pfeiffer D., Moomon A., Lohaanukul P., Punyapornwithaya V. (2021). Analysis of nationwide survey data to determine bacterial contamination levels in meat from pig slaughterhouses in Thailand. Food Control, 126: 108005. Search in Google Scholar

Klein G., Pack A., Reuter G. (1998). Antibiotic resistance patterns of enterococci and occurrence of vancomycin-resistant enterococci in raw minced beef and pork in Germany. Appl. Environ. Microbiol., 64: 1825–1830. Search in Google Scholar

Koo M., Cho A.R., Jeong A.R., Kim H.J., Park Y.H., Kwak H.S., Hwan I.G. (2013). Antibiotic susceptibility and molecular typing of Enterococcus faecalis from retail pork meat products in Korea. J. Korean. Soc Appl. Biol. Chem., 56: 295–299. Search in Google Scholar

Kročko M., Čanigová M., Duckova V., Artimova A., Bezekova J., Poston J. (2011). Antibiotic resistance of Enterococcus species isolated from raw foods of animal origin in South West part of Slovakia. Czech J. Food Sci., 29: 654–659. Search in Google Scholar

Kročko M., Lavová M., Bezeková J., Čanigová M., Gábor M., Ducková V., Trakovická A. (2012). Antibiotic resistance of Enterococcus faecalis isolated from gastrointestinal tract of broiler chickens after propolis and bee pollen addition. J. Anim. Sci. Biotechnol., 45: 58–62. Search in Google Scholar

Lauková A., Simonová M.P., Chrastinová Ľ., Plachá I., Čobanová K., Formelová Z., Chrenková M., Ondruška L., Strompfová V. (2016). Benefits of combinative application of probiotic, enterocin M-producing strain Enterococcus faecium AL41 and Eleutherococcus senticosus in rabbits. Folia Microbiol., 61:, 169–177.10.1007/s12223-015-0423-x26354790 Search in Google Scholar

Lawpidet P., Tengjaroenkul B., Saksangawong C., Sukon P. (2021). Global prevalence of vancomycin-resistant enterococci in food of animal origin: a meta-analysis. Foodborne Pathog Dis., 18: 405–412. Search in Google Scholar

Lemcke R., Bülte M. (2000). Occurrence of the vancomycin-resistant genes vanA, vanB, vanC1, vanC2 and vanC3 in Enterococcus strains isolated from poultry and pork. Int. J. Food Microbiol, 60: 185–194. Search in Google Scholar

Macedo A.S., Freitas A.R., Abreu C., Machado E., Peixe L., Sousa J.C., Novais C. (2011). Characterization of antibiotic resistant enterococci isolated from untreated waters for human consumption in Portugal. Int. J. Food Microbiol., 145: 315–319. Search in Google Scholar

McGowan L.L., Jackson C.R., Barrett J.B., Hiott L.M., Fedorka-Cray P.J. (2006). Prevalence and antimicrobial resistance of enterococci isolated from retail fruits, vegetables, and meats. J. Food Prot., 69: 2976–2982. Search in Google Scholar

McGowan-Spicer L.L., Fedorka-Cray P.J., Frye J.G., Meinersmann R.J., Barrett J.B., Jackson C.R. (2008). Antimicrobial resistance and virulence of Enterococcus faecalis isolated from retail food. J. Food Prot., 71: 760–769. Search in Google Scholar

Melese A., Genet C., Andualem T. (2020). Prevalence of vancomycin resistant Enterococci (VRE) in Ethiopia: a systematic review and meta-analysis. BMC Infect Dis., 20: 1–12. Search in Google Scholar

Messi P., Guerrieri E., De Niederhaeusern S., Sabia C., Bondi M. (2006). Vancomycin-resistant enterococci (VRE) in meat and environmental samples. Int. J. Food Microbiol., 107: 218–222. Search in Google Scholar

Moore D.F., Guzman, J.A., McGee C. (2008). Species distribution and antimicrobial resistance of enterococci isolated from surface and ocean water. J. Appl. Microbiol., 105: 1017–1025. Search in Google Scholar

Novais C., Coque T.M., Costa M.J., Sousa J.C., Baquero F., Peixe L.V. (2005). High occurrence and persistence of antibiotic-resistant enterococci in poultry food samples in Portugal. J. Antimicrob. Chemother, 56: 1139–1143. Search in Google Scholar

Oktay N., Temelli S., Çarlı K.T. (2009). Phenotypic characterisation of Enterococcus spp. from femoral head necrosis lesions of chickens. Turkish J. Vet. Anim. Sci., 33: 509–516. Search in Google Scholar

Olawale A.K., Salako R.J., Olawale A.O., Famurewa O. (2015). Antibiotic-resistant Enterococcus faecalis isolated from food canteens in Osun States, Nigeria. Br. Microbiol. Res. J., 6: 196–206. Search in Google Scholar

Osman K.M., Al-Maary K.S., Mubarak A.S., Dawoud T.M., Moussa I.M., Ibrahim M.D., Hessain A.M., Orabi A., Fawzy N.M. (2017). Characterization and susceptibility of streptococci and enterococci isolated from Nile tilapia (Oreochromis niloticus) showing septicaemia in aquaculture and wild sites in Egypt. BMC Vet. Res., 13: 1–10. Search in Google Scholar

Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., Chou R., Glanville J., Grimshaw J.M., Hróbjartsson A., Lalu M.M., Li T., Loder E.W., Wilson E.M., McDonald S., McGuinness L.A., Stewart L.A., Thomas J., Tricco A.C., Welch V.A., Whiting P., Moher D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372. Search in Google Scholar

Pavia M., Nobile C.G., Salpietro L., Angelillo I.F. (2000). Vancomycin resistance and antibiotic susceptibility of enterococci in raw meat. J. Food Prot., 63: 912–915. Search in Google Scholar

Pesavento G., Calonico C., Ducci B., Magnanini A., Nostro A.L. (2014). Prevalence and antibiotic resistance of Enterococcus spp. isolated from retail cheese, ready-to-eat salads, ham, and raw meat. Food Microbiol., 41: 1–7. Search in Google Scholar

Peters J., Mac K., Wichmann-Schauer H., Klein G., Ellerbroek L. (2003). Species distribution and antibiotic resistance patterns of enterococci isolated from food of animal origin in Germany. Int. J. Food Microbiol., 88: 311–314. Search in Google Scholar

Petersen A., Dalsgaard A. (2003). Antimicrobial resistance of intestinal Aeromonas spp. and Enterococcus spp. in fish cultured in integrated broiler-fish farms in Thailand. Aquaculture, 219: 71–82. Search in Google Scholar

Poeta P., Costa D., Igrejas G., Rodrigues J., Torres C. (2007). Phenotypic and genotypic characterization of antimicrobial resistance in faecal enterococci from wild boars (Sus scrofa). Vet. Microbiol., 125: 368–374. Search in Google Scholar

Raafat S.A. (2016). Prevalence of vancomycin resistant enterococci in different food samples, Egypt. J. Med. Microbiol., 25: 47–55. Search in Google Scholar

Ramos E.G. (2016). Caracterización fenotípica y genotípica de la resistencia a antimicrobianos en cepas de “Escherichia coli” y “Enterococcus spp.” de origen alimentario (Doctoral dissertation, Universidad de León). Search in Google Scholar

Riboldi G.P., Frazzon J., d’Azevedo P.A., Frazzon A.P.G. (2009). Antimicrobial resistance profile of Enterococcus spp. isolated from food in Southern Brazil. Braz. J. Microbiol., 40: 125–128. Search in Google Scholar

Robredo B., Singh K.V., Baquero F., Murray B.E., Torres C. (2000). Vancomycin-resistant enterococci isolated from animals and food. Int. J. Food Microbiol., 54: 197–204. Search in Google Scholar

Rodríguez-López P., Saá-Ibusquiza P., Mosquera-Fernández M., López-Cabo M. (2015). Listeria monocytogenes-carrying consortia in food industry. Composition, subtyping and numerical characterisation of mono-species biofilm dynamics on stainless steel. Int. J. Food Microbiol., 206: 84–95. Search in Google Scholar

Różańska H., Lewtak-Piłat A., Kubajka M., Weiner M. (2019). Occurrence of enterococci in mastitic cow’s milk and their antimicrobial resistance. J. Vet. Res., 63: 93. Search in Google Scholar

Sanlibaba P., Senturk E. (2018). Prevalence, characterization and antibiotic resistance of enterococci from traditional cheeses in Turkey. Int. J. Food Prop., 21: 1955–1963. Search in Google Scholar

Schwaiger K., Hölzel C., Bauer J. (2011). Detection of the macrolideefflux protein A gene mef (A) in Enterococcus faecalis. Microb. Drug Resist., 17: 429–432. Search in Google Scholar

Shiadeh S.M.J., Pormohammad A., Hashemi A., Lak P. (2019). Global prevalence of antibiotic resistance in blood-isolated Enterococcus faecalis and Enterococcus faecium: a systematic review and metaanalysis. Infect Drug Resist., 12: 2713. Search in Google Scholar

Simjee S., White D.G., McDermott P.F., Wagner D.D., Zervos M.J., Donabedian S.M., English L.L., Hayes J.R., Walker R.D. (2002). Characterization of Tn 1546 in vancomycin-resistant Enterococcus faecium isolated from canine urinary tract infections: evidence of gene exchange between human and animal enterococci. J. Clin. Microbiol., 40: 4659–4665. Search in Google Scholar

Stępień-Pyśniak D., Marek A., Banach T., Adaszek Ł., Pyzik E., Wilczyński J., Winiarczyk S. (2016). Prevalence and antibiotic resistance of Enterococcus strains isolated from poultry. Acta Vet. Hung., 64: 148–163. Search in Google Scholar

Tang K.L., Caffrey N.P., Nóbrega D.B., Cork S.C., Ronksley P.E., Barkema H.M., Polachek A.J., Ganshorn H., Sharma N., Kellner C.D., Ghali CD. (2017). Restricting the use of antibiotics in foodproducing animals and its associations with antibiotic resistance in food-producing animals and human beings: a systematic review and meta-analysis. Lancet Planet Health., 1: e316–e327. Search in Google Scholar

Terkuran M., Erginkaya Z., Ünal E., Güran M., Kizilyildirim S., Ugur G., Köksal F. (2014). The relationship between virulence factors and vancomycin resistance among Enterococci collected from food and human samples in Southern Turkey. Ankara Üniv. Vet. Fak. Derg., 61: 133–140. Search in Google Scholar

Valenzuela A.S., Omar N.B., Abriouel H., López R.L., Ortega E., Cañamero M.M., Gálvez A. (2008). Risk factors in enterococci isolated from foods in Morocco: determination of antimicrobial resistance and incidence of virulence traits. Food Chem. Toxicol., 46: 2648–2652. Search in Google Scholar

Valenzuela A.S., Omar N.B., Abriouel H., López R.L., Veljovic K., Cañamero M.M., Topisirovic M.K.L., Gálvez A. (2009). Virulence factors, antibiotic resistance, and bacteriocins in enterococci from artisan foods of animal origin. Food Control, 20: 381–385. Search in Google Scholar

Wada Y., Irekeola A.A., Shueb R.H., Wada M., Afolabi H.A., Yean C.Y., Zaidah A.R. (2022). Prevalence of vancomycin-resistant Enterococcus (VRE) in poultry in Malaysia: The first meta-analysis and systematic review. Antibiotics, 11: 171. Search in Google Scholar

Wilson I.G., McAfee G.G. (2002). Vancomycin-resistant enterococci in shellfish, unchlorinated waters, and chicken. Int. J. Food Microbiol., 79: 143–151. Search in Google Scholar

Yılmaz E.Ş., Aslantaş Ö., Önen S.P., Türkyılmaz S., Kürekci C. (2016). Prevalence, antimicrobial resistance and virulence traits in enterococci from food of animal origin in Turkey. LWT-Food Sci. Technol., 66: 20–26. Search in Google Scholar

Yi M., Zou J., Zhao J., Tang Y., Yuan Y., Yang B., Huang J., Xia P., Xia Y. (2022). Emergence of optrA-mediated linezolid resistance in Enterococcus faecium: A molecular investigation in a tertiary hospital of Southwest China from 2014–2018. Infect. Drug Resist., 15: 13. Search in Google Scholar

Yurdakul N.E., Erginkaya Z., Ünal E. (2013). Antibiotic resistance of enterococci, coagulase negative staphylococci and Staphylococcus aureus isolated from chicken meat. Czech J. Food Sci., 31: 14–19. Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo