Zacytuj

Abbasi Pirouz A., Selamat J., Zafar Iqbal S., Iskandar Putra Samsudin N. (2020). Efficient and simultaneous chitosan-mediated removal of 11 mycotoxins from palm kernel cake. Toxins, 12: 115.10.3390/toxins12020115 Search in Google Scholar

Abd-Elsalam K.A., Alghuthaymi M.A., Shami A., Rubina M.S., Abramchuk S.S., Shtykova E.V. (2020). Copper-chitosan nanocomposite hydrogels against aflatoxigenic Aspergillus flavus from dairy cattle feed. J. Fungi., 6: 112.10.3390/jof6030112 Search in Google Scholar

Abdelnour S.A., Alagawany M., Hashem N.M., Farag M.R., Alghamdi E.S., Hassan F.U., Bilal R.M., Elnesr S.S., Dawood M.A.O., Nagadi S.A. (2021). Nanominerals: fabrication methods, benefits and hazards, and their applications in ruminants with special reference to selenium and zinc nanoparticles. Animals, 11: 1916.10.3390/ani11071916 Search in Google Scholar

Abdeltwab W.M., Abdelaliem Y.F., Metry W.A., Eldeghedy M. (2019). Antimicrobial effect of chitosan and nano-chitosan against some pathogens and spoilage microorganisms. J. Adv. Lab. Res. Biol., 10: 815. Search in Google Scholar

Ahsan S.M., Thomas M., Reddy K.K., Sooraparaju S.G., Asthana A., Bhatnagar I. (2018). Chitosan as biomaterial in drug delivery and tissue engineering. Int. J. Biol. Macromol., 110: 97–109.10.1016/j.ijbiomac.2017.08.140 Search in Google Scholar

Alagawany M., Elnesr S.S., Farag M.R., Abd El-Hack M.E., Barkat R.A., Gabr A.A. Foda M.A., Noreldin A.E., Khafaga A.F., El-Sabrout K., Elwan H.A. (2021). Potential role of important nutraceuticals in poultry performance and health – A comprehensive review. Res. Vet. Sci., 137: 9–29.10.1016/j.rvsc.2021.04.009 Search in Google Scholar

Amenta V., Aschberger K., Arena M., Bouwmeester H., Moniz F.B., Brandhoff P., Gottardo S., Marvin H.J., Mech A., Pesudo L.Q. (2015). Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. RTP, 73: 463–476.10.1016/j.yrtph.2015.06.016 Search in Google Scholar

Anraku M., Gebicki J.M., Iohara D., Tomida H., Uekama K., Maruyama T., Hirayama F., Otagiri M. (2018). Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies. Carbohydr. Polym., 199: 141–149.10.1016/j.carbpol.2018.07.016 Search in Google Scholar

Anwar M., Awais M., Akhtar M., Navid M., Muhammad F. (2019). Nutritional and immunological effects of nano-particles in commercial poultry birds. World. Poultry Sci. J., 75: 261–272.10.1017/S0043933919000199 Search in Google Scholar

Aranaz I., Mengíbar M., Harris R., Paños I., Miralles B., Acosta N., Galed G., Heras Á. (2009). Functional characterization of chitin and chitosan. Curr. Chem. Biol., 3: 203–230.10.2174/2212796810903020203 Search in Google Scholar

Araújo A.P.C.D., Venturelli B.C., Santos M.C.B., Gardinal R., Cônsolo N.R.B., Calomeni G.D., Freitas J.E., Barletta R.V., Gandra J.R., Paiva P.G. Rennó F.P. (2015). Chitosan affects total nutrient digestion and ruminal fermentation in Nellore steers. Anim. Feed Sci. Technol., 206: 114–118.10.1016/j.anifeedsci.2015.05.016 Search in Google Scholar

Arslan C., Tufan T. (2018). Effects of chitosan oligosaccharides and L-carnitine individually or concurrent supplementation for diets on growth performance, carcass traits and serum composition of broiler chickens. Rev. Med. Vet., 169: 130–137. Search in Google Scholar

Belanche A., Pinloche E., Preskett D., Newbold C.J. (2016). Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique. FEMS Microbiol. Ecol., 92.10.1093/femsec/fiv160 Search in Google Scholar

Benediktsdóttir B.E., Baldursson Ó., Másson M. (2014). Challenges in evaluation of chitosan and trimethylated chitosan (TMC) as mucosal permeation enhancers: From synthesis to in vitro application. J. Control. Release., 173: 18–31.10.1016/j.jconrel.2013.10.022 Search in Google Scholar

Bhuiyan M.R., Shaid A., Bashar M., Haque P., Hannan M. (2013). A novel approach of dyeing jute fiber with reactive dye after treating with chitosan. Open J. Org. Polym. Mater., 2013. Search in Google Scholar

Bhuiyan M.R., Shaid A., Khan M. (2014). Cationization of cotton fiber by chitosan and its dyeing with reactive dye without salt. Chem. Mater. Eng., 2: 96–100.10.13189/cme.2014.020402 Search in Google Scholar

Blokhina O., Virolainen E., Fagerstedt K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot., 91: 179–194.10.1093/aob/mcf118 Search in Google Scholar

Brewer M. (2011). Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf., 10: 221–247.10.1111/j.1541-4337.2011.00156.x Search in Google Scholar

Caparros Megido R., Sablon L., Geuens M., Brostaux Y., Alabi T., Blecker C., Drugmand D., Haubruge É., Francis F. (2014). Edible insects acceptance by Belgian consumers: promising attitude for entomophagy development. J. Sens. Stud., 29: 14–20.10.1111/joss.12077 Search in Google Scholar

Cheba B.A. (2011). Chitin and chitosan: marine biopolymers with unique properties and versatile applications. GJBBR, 6: 149–153. Search in Google Scholar

Chen Y., Kim I., Cho, J., Yoo J., Wang Y., Huang Y., Kim H., Shin S. (2009). Effects of chitooligosaccharide supplementation on growth performance, nutrient digestibility, blood characteristics and immune responses after lipopolysaccharide challenge in weanling pigs. Livest. Sci., 124: 255–260.10.1016/j.livsci.2009.02.006 Search in Google Scholar

Choi C.-R., Kim E.-K., Kim Y.-S., Je J.-Y., An S.-H., Lee J. D., Wang J. H., Ki S. S., Jeon B.-T., Moon S.-H. (2012). Chitooligosaccharides decreases plasma lipid levels in healthy men. Int. J. Food. Sci. Nutr., 63: 103–106.10.3109/09637486.2011.602051 Search in Google Scholar

Chou C.-K., Chen S.-M., Li Y.-C., Huang T.-C., Lee J.-A. (2015). Low-molecular-weight chitosan scavenges methylglyoxal and N ε-(carboxyethyl) lysine, the major factors contributing to the pathogenesis of nephropathy. SpringerPlus, 4: 1–7.10.1186/s40064-015-1106-4 Search in Google Scholar

Chung Y.-C., Wang H.-L., Chen Y.-M., Li S.-L. (2003). Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Biores. Tech., 88: 179–184.10.1016/S0960-8524(03)00002-6 Search in Google Scholar

Cook K.L., Rothrock Jr M.J., Eiteman M.A., Lovanh N., Sistani K. (2011). Evaluation of nitrogen retention and microbial populations in poultry litter treated with chemical, biological or adsorbent amendments. J. Environ. Manage., 92: 1760–1766.10.1016/j.jenvman.2011.02.005 Search in Google Scholar

Croisier F., Jérôme C. (2013). Chitosan-based biomaterials for tissue engineering. Eur. Polym. J., 49: 780–792.10.1016/j.eurpolymj.2012.12.009 Search in Google Scholar

De Paiva P.G., de Jesus E.F., Del Valle T.A., de Almeida G.F., Costa A.G.B.V.B., Consentini C.E.C., Zanferari F., Takiya C.S., da Silva Bueno I.C., Rennó F.P. (2016). Effects of chitosan on ruminal fermentation, nutrient digestibility, and milk yield and composition of dairy cows. Anim. Prod. Sci., 57: 301–307.10.1071/AN15329 Search in Google Scholar

De Souza L.M., Ventura A.S., Silva Gouvea W.D., do Carmo A.A., Vieira A.N., Queiroz C.C., Queiroz E.R., de Sena Gandra A.M., de Araújo Gabriel A.M. (2018). Haematological and biochemical parameters of rabbits supplemented with chitosan. SBZ, 25. Search in Google Scholar

De Souza G.A.P., Rocha R.P., Gonçalves R.L., Ferreira C.S., de Mello Silva B., de Castro R.F.G., Rodrigues J.F., Júnior J.C., Malaquias L.C., Abrahão J.S., Coelho L.F.L. (2021). Nanoparticles as vaccines to prevent arbovirus infection: a long road ahead. Pathogens, 10: 36.10.3390/pathogens10010036 Search in Google Scholar

Del Valle T.A., de Paiva P.G., de Jesus E.F., de Almeida G.F., Zanferari F., Costa A.G., Bueno I.C., Rennó F.P. (2017). Dietary chitosan improves nitrogen use and feed conversion in diets for mid-lactation dairy cows. Livest. Sci., 201: 22–29.10.1016/j.livsci.2017.04.003 Search in Google Scholar

Dias A., Goes R., Gandra J., Takiya C., Branco A., Jacaúna A., Oliveira R., Souza C., Vaz M. (2017). Increasing doses of chitosan to grazing beef steers: Nutrient intake and digestibility, ruminal fermentation, and nitrogen utilization. Anim. Feed Sci., Technol., 225: 73–80.10.1016/j.anifeedsci.2017.01.015 Search in Google Scholar

Dong L., Wichers H.J., Govers C. (2019). Beneficial health effects of chitin and chitosan. In: Chitin and chitosan: Properties and applications, van den Broek L.A.M., Boeriu C.G. (eds). John Wiley & Sons, pp. 145–167.10.1002/9781119450467.ch6 Search in Google Scholar

Duan X., Tian G., Chen D., Yang J., Zhang L., Li B., Huang L., Zhang D., Zheng P., Mao X. (2020). Effects of diet chitosan oligosaccharide on performance and immune response of sows and their offspring. Livest. Sci., 239: 104114.10.1016/j.livsci.2020.104114 Search in Google Scholar

Dutta P.K., Dutta J., Tripathi V. (2004). Chitin and chitosan: chemistry, properties, and applications. J. Sci. Ind. Res., 63: 20–31. Search in Google Scholar

El-Ashram S., Abdelhafez G.A., Farroh K.Y. (2020). Effects of nanochitosan supplementation on productive performance of Japanese quail. J. Appl. Poult. Res., 29: 917–929.10.1016/j.japr.2020.09.002 Search in Google Scholar

El-Sheikh S., El-Alim A., Ibrahim H., Mobarez E., El-Masry D., El-Sayed W. (2019). Preparation, characterization and antibacterial activity of chitosan nanoparticle and chitosan-propolis nanocomposite. Adv. Anim. Vet. Sci., 7: 183–190. Search in Google Scholar

Enoka V.I.L., Kikuvi G.M., Ndung’u P.W. (2020). Antibacterial activity, acute toxicity and the effect of garlic and onion extract chitosan nanoparticles on the growth indices in Rainbow Rooster Chicken. AIMS Agric. Food., 5: 449–465.10.3934/agrfood.2020.3.449 Search in Google Scholar

Feng T., Du Y., Li J., Hu Y., Kennedy J.F. (2008). Enhancement of antioxidant activity of chitosan by irradiation. Carbohydr. Polym., 73: 126–132.10.1016/j.carbpol.2007.11.003 Search in Google Scholar

Fernández-Serrano P., Casares-Crespo L., Viudes-de-Castro M.P. (2017). Chitosan–dextran sulphate nanoparticles for Gn RH release in rabbit insemination extenders. Reprod. Domest. Anim., 52: 72–74.10.1111/rda.13062 Search in Google Scholar

Gallaher D.D. (2003). Chitosan, cholesterol lowering, and caloric loss. Food Sci. Nutr., 14: 32–35. Search in Google Scholar

Gandra J.R., Oliveira E.R., Takiya C.S., Goes R.H.T.B., Paiva P.G., Oliveira K.M.P., Gandra E.R.S., Orbach N.D. Haraki H.M.C. (2016). Chitosan improves the chemical composition, microbiological quality, and aerobic stability of sugarcane silage. Anim. Feed Sci. Technol., 214: 44–52.10.1016/j.anifeedsci.2016.02.020 Search in Google Scholar

Gao F., Zhou G.-H., Han Z.-K. (2001). Effect of fructooligosaccharides (FOS) on growth performance, immune function and endocrine secretion in chicks. Acta Zool. Sinica, 13: 51–55. Search in Google Scholar

Geerlings S.Y., Kostopoulos I., De Vos W.M., Belzer C. (2018). Akkermansia muciniphila in the human gastrointestinal tract: when, where, and how? Microorganisms, 6: 75.10.3390/microorganisms6030075616324330041463 Search in Google Scholar

Gorelik V., Rebezov M., Lopaeva N., Smirnova E., Sultanova S. (2021). Morphological and biochemical parameters of cow blood when using chitosan preparations. Proc. E3S Web Conf., 254: 08025.10.1051/e3sconf/202125408025 Search in Google Scholar

Goy R.C., Britto D.D., Assis O.B. (2009). A review of the antimicrobial activity of chitosan. Polímeros, 19: 241–247.10.1590/S0104-14282009000300013 Search in Google Scholar

Guan G., Azad M., Kalam A., Lin Y., Kim S.W., Tian Y., Liu G., Wang H. (2019). Biological effects and applications of chitosan and chito-oligosaccharides. Front. Physiol., 10: 516.10.3389/fphys.2019.00516 Search in Google Scholar

Guo Z., Liu H., Chen X., Ji X., Li P. (2006). Hydroxyl radicals scavenging activity of N-substituted chitosan and quaternized chitosan. Bioorganic Med. Chem. Lett., 16: 6348–6350.10.1016/j.bmcl.2006.09.009 Search in Google Scholar

Guo M., Rong W.-T., Hou J., Wang D.-F., Lu Y., Wang Y., Yu S.-Q., Xu Q. (2013). Mechanisms of chitosan-coated poly (lactic-co-glycolic acid) nanoparticles for improving oral absorption of 7-ethyl-10-hydroxycamptothecin. Nanotechnology, 24: 245101.10.1088/0957-4484/24/24/245101 Search in Google Scholar

Hamady G., Farroh K. (2020). Effects of adding nano-chitosan on productive performance of laying hens. EJNF, 23: 321–336.10.21608/ejnf.2020.115144 Search in Google Scholar

Han K., Kwon I., Lohakare J., Heo S., Chae B. (2007 a). Chito-oligosaccharides as an alternative to antimicrobials in improving performance, digestibility and microbial ecology of the gut in weanling pigs. Asian-Australas. J. Anim. Sci., 20: 556–562.10.5713/ajas.2007.556 Search in Google Scholar

Han K., Yang Y., Hahn T., Kwon I., Lohakare J., Lee J., Chae B. (2007 b). Effects of chito-oligosaccharides supplementation on performance, nutrient digestibility, pork quality and immune response in growing-finishing pigs. J. Anim. Feed Sci., 16: 607.10.22358/jafs/66818/2007 Search in Google Scholar

Hashem N., Sallam S. (2020). Reproductive performance of goats treated with free gonadorelin or nanoconjugated gonadorelin at estrus. Domest. Anim. Endocrinol., 71: 106390.10.1016/j.domaniend.2019.106390 Search in Google Scholar

Hashem N.M., Gonzalez-Bulnes A. (2021). Nanotechnology and reproductive management of farm animals: challenges and advances. Animals, 11: 1932.10.3390/ani11071932 Search in Google Scholar

Hashem N.M., Gonzalez-Bulnes A. (2022). The use of probiotics for management and improvement of reproductive eubiosis and function. Nutrients, 21: 902.10.3390/nu14040902 Search in Google Scholar

Hashem N.M., Hosny N.S., El-Desoky N.I., Shehata M.G. (2021). Effect of nanoencapsulated alginate-synbiotic on gut microflora balance, immunity, and growth performance of growing rabbits. Polymers, 13: 4191.10.3390/polym13234191 Search in Google Scholar

Hashem N.M., EL-Sherbiny H.R., Fathi M., Abdelnaby E.A. (2022). Nanodelivery system for Ovsynch protocol improves ovarian response, ovarian blood flow Doppler velocities, and hormonal profile of goats. Animals, 12: 1442.10.3390/ani12111442 Search in Google Scholar

Hassan F., Abd El-Maged M., El-Halim H., Ramadan G. (2021). Effect of dietary chitosan, nano-chitosan supplementation and different Japanese quail lines on growth performance, plasma constituents, carcass characteristics, antioxidant status and intestinal microflora population. J. Anim. Health Prod., 9: 119–131.10.17582/journal.jahp/2021/9.2.119.131 Search in Google Scholar

Hassanein E.M., Hashem N.M., El-Azrak K.E.-D.M., Gonzalez-Bulnes A., Hassan G.A., Salem M.H. (2021). Efficiency of GnRH–loaded chitosan nanoparticles for inducing LH secretion and fertile ovulations in protocols for artificial insemination in rabbit does. Animals, 11: 440.10.3390/ani11020440 Search in Google Scholar

Henry D., Ruiz-Moreno M., Ciriaco F., Kohmann M., Mercadante V., Lamb G., DiLorenzo N. (2015). Effects of chitosan on nutrient digestibility, methane emissions, and in vitro fermentation in beef cattle. J. Anim. Sci., 93: 3539–3550.10.2527/jas.2014-8844 Search in Google Scholar

Hernandez-Patlan D., Solis-Cruz B., Hargis B.M., Tellez G. (2018). Chitoneous materials for control of foodborne pathogens and mycotoxins in poultry. In: Chitin-Chitosan: Myriad Functionalities in Science and Technology, Intech Open., pp. 261–282.10.5772/intechopen.76041 Search in Google Scholar

Hernawan E., Adriani L., Mushawwir A., Cahyani C., Darwis D. (2017). Effect of dietary supplementation of chitosan on blood biochemical profile of laying hens. Pak J. Nutr., 16: 696–699.10.3923/pjn.2017.696.699 Search in Google Scholar

Ho T., Jahan M., Haque Z., Kracht S., Wynn P.C., Du Y., Gunn A., Wang B. (2020). Maternal chitosan oligosaccharide intervention optimizes the production performance and health status of gilts and their offspring. Anim. Nutr., 6: 134–142.10.1016/j.aninu.2020.02.001 Search in Google Scholar

Holappa J., Hjálmarsdóttir M., Másson M., Rúnarsson Ö., Asplund T., Soininen P., Nevalainen T., Järvinen T. (2006). Antimicrobial activity of chitosan N-betainates. Carbohyd Polym., 65: 114–118.10.1016/j.carbpol.2005.11.041 Search in Google Scholar

Hou Q., Gao Q. (2001). Chitosan and medicine. Shanghai Science Technology Press, Shanghai, China, 12: 1387–1392. Search in Google Scholar

Hu Y., Zhang J., Yu C., Li Q., Dong F., Wang G., Guo Z. (2014). Synthesis, characterization, and antioxidant properties of novel inulin derivatives with amino-pyridine group. Int. J. Biol. Macromol., 70: 44–49.10.1016/j.ijbiomac.2014.06.024 Search in Google Scholar

Hu S., Wang Y., Wen X., Wang L., Jiang Z., Zheng C. (2018). Effects of low-molecular-weight chitosan on the growth performance, intestinal morphology, barrier function, cytokine expression and antioxidant system of weaned piglets. BMC Vet. Res., 14: 1–7.10.1186/s12917-018-1543-8 Search in Google Scholar

Huang R., Yin Y., Wu G., Zhang Y., Li T., Li L., Li M., Tang Z., Zhang J., Wang B. (2005). Effect of dietary oligochitosan supplementation on ileal digestibility of nutrients and performance in broilers. Poultry Sci., 84: 1383–1388.10.1093/ps/84.9.1383 Search in Google Scholar

Huang R.L., Deng Z.Y., Yang C.B., Yin Y.L., Xie M.Y., Wu G.Y., Li T.J., Li L.L., Tang Z. R., Kang P. (2007). Dietary oligochitosan supplementation enhances immune status of broilers. J. Sci. Food Agric., 87: 153–159.10.1002/jsfa.2694 Search in Google Scholar

Huang B., Xiao D., Tan B., Xiao H., Wang J., Yin J., Duan J., Huang R., Yang C., Yin Y. (2016). Chitosan oligosaccharide reduces intestinal inflammation that involves calcium-sensing receptor (CaSR) activation in lipopolysaccharide (LPS)-challenged piglets. J. Agric. Food Chem., 64: 245–252.10.1021/acs.jafc.5b05195 Search in Google Scholar

Islam S., Bhuiyan M.R., Islam M. (2017). Chitin and chitosan: structure, properties and applications in biomedical engineering. J. Polym. Environ., 25: 854–866.10.1007/s10924-016-0865-5 Search in Google Scholar

Jan S.-S., Liu D.-C., Dong X.-Y., Hu Y.-M., Chen J.-D. (2012). Effects of chitosan and its derivative added to water on immunological enhancement and disease control. Immunotherapy, 4: 697–701.10.2217/imt.12.68 Search in Google Scholar

Jayakumar R., Prabaharan M., Nair S., Tokura S., Tamura H., Selvamurugan N. (2010). Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog. Mater. Sci., 55: 675–709.10.1016/j.pmatsci.2010.03.001 Search in Google Scholar

Jayanegara A., Harahap R., Suharti S., Nahrowi N. (2021). Chitosan as a feed additive: Its modulatory effect on methane emission and biohydrogenation under artificial rumen system. Proc. IOP Conf. Ser., Mater. Sci. Eng., 1098: 042101.10.1088/1757-899X/1098/4/042101 Search in Google Scholar

Je J.-Y., Kim S.-K. (2006). Reactive oxygen species scavenging activity of aminoderivatized chitosan with different degree of deacetylation. Bioorg. Med. Chem., 14: 5989–5994.10.1016/j.bmc.2006.05.016 Search in Google Scholar

Jiménez-Ocampo R., Valencia-Salazar S., Pinzón-Díaz C.E., Herrera-Torres E., Aguilar-Pérez C.F., Arango J., Ku-Vera J.C. (2019). The role of chitosan as a possible agent for enteric methane mitigation in ruminants. Animals, 9: 942.10.3390/ani9110942 Search in Google Scholar

Juarez-Morales L., Hernandez-Cocoletzi H., Chigo-Anota E., Aguila-Almanza E., Tenorio-Arvide M. (2017). Chitosan-aflatoxins b1, m1 interaction: a computational approach. Curr. Org. Chem., 21: 2877–2883.10.2174/1385272821666170511165159 Search in Google Scholar

Kamal M. (2021). Effect of chitosan supplementation on productive and physiological performance in rabbits. Suez Canal University, Ismailia, Egypt. Search in Google Scholar

Kasaai M.R. (2009). Various methods for determination of the degree of N-acetylation of chitin and chitosan: a review. J. Agric. Food Chem., 57: 1667–1676.10.1021/jf803001m Search in Google Scholar

Keser O., Bilal T., Kutay H.C., Abas I., Eseceli H. (2012). Effects of chitosan oligosaccharide and/or beta-glucan supplementation to diets containing organic zinc on performance and some blood indices in broilers. Pak Vet. J., 32: 15–19. Search in Google Scholar

Khambualai O., Yamauchi K.-E., Tangtaweewipat S., Cheva-Isarakul B. (2008). Effects of dietary chitosan diets on growth performance in broiler chickens. J. Poult. Sci., 45: 206–209.10.2141/jpsa.45.206 Search in Google Scholar

Khambualai O., Yamauchi K., Tangtaweewipat S., Cheva-Isarakul B. (2009). Growth performance and intestinal histology in broiler chickens fed with dietary chitosan. Br. Poult. Sci., 50: 592–597.10.1080/00071660903247182 Search in Google Scholar

Khan I., Saeed K., Khan I. (2019). Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 12: 908–931.10.1016/j.arabjc.2017.05.011 Search in Google Scholar

Kim S.K., Rajapakse N. (2005). Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydr. Polym., 62: 357–368.10.1016/j.carbpol.2005.08.012 Search in Google Scholar

Kim K.W., Thomas R. (2007). Antioxidative activity of chitosans with varying molecular weights. Food Chem., 101: 308–313.10.1016/j.foodchem.2006.01.038 Search in Google Scholar

Klaykruayat B., Siralertmukul K., Srikulkit K. (2010). Chemical modification of chitosan with cationic hyperbranched dendritic polyamidoamine and its antimicrobial activity on cotton fabric. Carbohydr. Polym., 80: 197–207.10.1016/j.carbpol.2009.11.013 Search in Google Scholar

Kobayashi S., Terashima Y., Itoh H. (2006). The effects of dietary chitosan on liver lipid concentrations in broiler chickens treated with propylthiouracil. J. Poult. Sci., 43: 162–166.10.2141/jpsa.43.162 Search in Google Scholar

Koide S. (1998). Chitin-chitosan: properties, benefits and risks. Nutr. Res., 18: 1091–1101.10.1016/S0271-5317(98)00091-8 Search in Google Scholar

Kong M., Chen X.G., Xing K., Park H.J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. Int. J. Food Microbiol., 144: 51–63.10.1016/j.ijfoodmicro.2010.09.012 Search in Google Scholar

Kong X., Zhou X., Lian G., Blachier F., Liu G., Tan B., Nyachoti C., Yin Y. (2014). Dietary supplementation with chitooligosaccharides alters gut microbiota and modifies intestinal luminal metabolites in weaned Huanjiang mini-piglets. Livest. Sci., 160: 97–101.10.1016/j.livsci.2013.11.023 Search in Google Scholar

Kumar M.N.R. (2000). A review of chitin and chitosan applications. React. Funct. Polym., 46: 1–27.10.1016/S1381-5148(00)00038-9 Search in Google Scholar

Kurita K. (2001). Controlled functionalization of the polysaccharide chitin. Prog. Polym. Sci., 26: 1921–1971.10.1016/S0079-6700(01)00007-7 Search in Google Scholar

Lamarque G., Cretenet M., Viton C., Domard A. (2005). New route of deacetylation of α-and β-chitins by means of freeze−pump out−thaw cycles. Biomacromolecules, 6: 1380–1388.10.1021/bm049322b Search in Google Scholar

Lamas A., Anton X., Miranda J.M., Roca-Saavedra P., Cardelle-Cobas A., Ibarra I., Franco C., Cepeda A. (2016). Technological strategies for the development of egg-derived products with reduced content of cholesterol. Food Bioproc. Tech., 9: 81–90.10.1007/s11947-015-1599-4 Search in Google Scholar

Lan R., Li Y., Chang Q., Zhao Z. (2020). Dietary chitosan oligosaccharides alleviate heat stress-induced intestinal oxidative stress and inflammatory response in yellow-feather broilers. Poultry Sci., 99: 6745–6752.10.1016/j.psj.2020.09.050 Search in Google Scholar

Lee H.-W., Park Y.-S., Jung J.-S., Shin W.-S. (2002). Chitosan oligosaccharides, dp 2–8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe, 8: 319–324.10.1016/S1075-9964(03)00030-1 Search in Google Scholar

Li X., Piao X., Kim S., Liu P., Wang L., Shen Y., Jung S., Lee H. (2007). Effects of chito-oligosaccharide supplementation on performance, nutrient digestibility, and serum composition in broiler chickens. Poultry Sci., 86: 1107–1114.10.1093/ps/86.6.1107 Search in Google Scholar

Li X., Wu P., Gao G. F., Cheng S. (2011). Carbohydrate-functionalized chitosan fiber for influenza virus capture. Biomacromolecules, 12: 3962–3969.10.1021/bm200970x Search in Google Scholar

Li J., Shi B., Yan S., Jin L., Guo Y., Xu Y., Li T., Guo X. (2013). Effects of dietary supplementation of chitosan on humoral and cellular immune function in weaned piglets. Anim. Feed Sci. Technol., 186: 204–208.10.1016/j.anifeedsci.2013.10.007 Search in Google Scholar

Li T., Na R., Yu P., Shi B., Yan S., Zhao Y., Xu Y. (2015). Effects of dietary supplementation of chitosan on immune and antioxidative function in beef cattle. Czech J. Anim. Sci., 60: 38–44.10.17221/7910-CJAS Search in Google Scholar

Li J.-L., Xu Y.-Q., Shi B.-L., Sun D.-S., Yan S.-M., Guo X.-Y. (2017). Dietary chitosan affects metabolism of arachidonic acid in weaned piglets. Czech J. Anim. Sci., 62: 58–66.10.17221/39/2016-CJAS Search in Google Scholar

Li J., Cheng Y., Chen Y., Qu H., Zhao Y., Wen C., Zhou Y. (2019). Dietary chitooligosaccharide inclusion as an alternative to antibiotics improves intestinal morphology, barrier function, antioxidant capacity, and immunity of broilers at early age. Animals, 9: 493.10.3390/ani9080493 Search in Google Scholar

Lim S.-H., Hudson S.M. (2004). Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr. Res., 339: 313–319.10.1016/j.carres.2003.10.024 Search in Google Scholar

Liu Q., Liang X., Wang G. (2007). Effects of dietary supplementation of chitosan on dry matter intake and blood parameters for dry dairy cows. J. Anim. Feed Sci., 16: 430–435.10.22358/jafs/74574/2007 Search in Google Scholar

Liu J., Zhang J., Xia W. (2008 a). Hypocholesterolaemic effects of different chitosan samples in vitro and in vivo. Food Chem., 107: 419–425.10.1016/j.foodchem.2007.08.044 Search in Google Scholar

Liu P., Piao X., Kim S., Wang L., Shen Y., Lee H., Li S. (2008 b). Effects of chito-oligosaccharide supplementation on the growth performance, nutrient digestibility, intestinal morphology, and fecal shedding of Escherichia coli and Lactobacillus in weaning pigs. J. Anim. Sci., 86: 2609–2618.10.2527/jas.2007-066818502883 Search in Google Scholar

Liu P., Piao X., Thacker P., Zeng Z., Li P., Wang D., Kim S. (2010). Chito-oligosaccharide reduces diarrhea incidence and attenuates the immune response of weaned pigs challenged with Escherichia coli K88. J. Anim. Sci., 88: 3871–3879.10.2527/jas.2009-2771 Search in Google Scholar

Liu M., Shi T., Liu J. (2011). Effects of chitosan on antioxidative function and immune organ index in broilers. J. Chin. Feed., 15: 22–25. Search in Google Scholar

Liu X., Wang N., Zhu Y., Yang Y., Chen X., Fan S., Chen Q., Zhou H., Zheng J. (2016). Inhibition of extracellular calcium influx results in enhanced IL-12 production in LPS-treated murine macrophages by downregulation of the CaMKK-AMPK-SIRT1 signaling pathway. Mediators Inflamm., 2016.10.1155/2016/6152713490412527313401 Search in Google Scholar

Liu M., Min L., Zhu C., Rao Z., Liu L., Xu W., Luo P., Fan L. (2017). Preparation, characterization and antioxidant activity of silk peptides grafted carboxymethyl chitosan. Int. J. Biol. Macromol., 104: 732–738.10.1016/j.ijbiomac.2017.06.071 Search in Google Scholar

Ma P., Liu H.-T., Wei P., Xu Q.-S., Bai X.-F., Du Y.-G., Yu C. (2011). Chitosan oligosaccharides inhibit LPS-induced over-expression of IL-6 and TNF-α in RAW264. 7 macrophage cells through blockade of mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling pathways. Carbohydr. Polym., 84: 1391–1398.10.1016/j.carbpol.2011.01.045 Search in Google Scholar

Madkour M., Salman F.M., El-Wardany I., Abdel-Fattah S.A., Alagawany M., Hashem N.M., Abdelnour S.A., El-Kholy M.S., Dhama K. (2021). Mitigating the detrimental effects of heat stress in poultry through thermal conditioning and nutritional manipulation. J. Therm. Biol., 103169.10.1016/j.jtherbio.2021.103169 Search in Google Scholar

Magalhaes T., Carvalho G., Santos E., Júnior J.F., Pina D., Pinto L., Mourão G., Soares F., Eiras C., Cirne L. (2019). Effect of cottonseed processing and chitosan supplementation on lamb performance, digestibility and nitrogen digestion. J. Agric. Sci., 157: 636–642.10.1017/S0021859619000911 Search in Google Scholar

Magalhaes T., Carvalho G., Santos E., Lima A., Junior J.F., Pina D., Santos S., Pinto, L., Mourao G., Soares F. (2021). Health concerns of lambs fed cottonseed hulls combined with chitosan by examining the blood metabolic profile and histopathology of the kidney, liver, and rumen. Vet. Med., 66: 470–480.10.17221/194/2020-VETMED Search in Google Scholar

Malmiri H.J., Jahanian M.A.G., Berenjian A. (2012). Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. Am. J. Biochem. Biotechnol., 8: 203–219.10.3844/ajbbsp.2012.203.219 Search in Google Scholar

Menconi A., Pumford N.R., Morgan M.J., Bielke L.R., Kallapura G., Latorre J.D., Wolfenden A.D., Hernandez-Velasco X., Hargis B.M., Tellez G. (2014). Effect of chitosan on Salmonella typhimurium in broiler chickens. Foodborne Pathog. Dis., 11: 165–169.10.1089/fpd.2013.1628 Search in Google Scholar

Meng Q., Yan L., Ao X., Jang H., Cho J., Kim I. (2010). Effects of chito-oligosaccharide supplementation on egg production, nutrient digestibility, egg quality and blood profiles in laying hens. Asian-Australas. J. Anim. Sci., 23: 1476–1481.10.5713/ajas.2010.10025 Search in Google Scholar

Miao Z., Guo L., Liu Y., Zhao W., Zhang J. (2020). Effects of dietary supplementation of chitosan on carcass composition and meat quality in growing Huoyan geese. Poultry Sci., 99: 3079–3085.10.1016/j.psj.2020.03.025 Search in Google Scholar

Mingoti R., Freitas Jr J., Gandra J., Gardinal R., Calomeni G., Barletta R., Vendramini T., Paiva P., Rennó F. (2016). Dose response of chitosan on nutrient digestibility, blood metabolites and lactation performance in Holstein dairy cows. Livest. Sci., 187: 35–39.10.1016/j.livsci.2016.02.008 Search in Google Scholar

Mousa G.A., Allak M.A., Shehata M.G., Hashem N.M., Hassan O.G.A. (2022). Dietary supplementation with a combination of fibrolytic enzymes and probiotics improves digestibility, growth performance, blood metabolites, and economics of fattening lambs. Animals, 12: 476.10.3390/ani12040476 Search in Google Scholar

Muanprasat C., Wongkrasant P., Satitsri S., Moonwiriyakit A., Pongkorpsakol P., Mattaveewong T., Pichyangkura R., Chatsudthipong V. (2015). Activation of AMPK by chitosan oligosaccharide in intestinal epithelial cells: Mechanism of action and potential applications in intestinal disorders. Biochem. Pharmacol., 96: 225–236.10.1016/j.bcp.2015.05.016 Search in Google Scholar

Nagamoto T., Hattori Y., Takayama K., Maitani Y. (2004). Novel chitosan particles and chitosan-coated emulsions inducing immune response via intranasal vaccine delivery. Pharm. Res., 21: 671–674.10.1023/B:PHAM.0000022414.17183.58 Search in Google Scholar

Nagpal K., Singh S.K., Mishra D.N. (2010). Chitosan nanoparticles: a promising system in novel drug delivery. Chem. Pharm. Bull., 58: 1423–1430.10.1248/cpb.58.1423 Search in Google Scholar

Naveed M., Phil L., Sohail M., Hasnat M., Baig M.M.F.A., Ihsan A.U., Shumzaid M., Kakar M.U., Khan T.M., Akabar M. (2019). Chitosan oligosaccharide (COS): An overview. Int. J. Biol. Macromol., 129: 827–843.10.1016/j.ijbiomac.2019.01.192 Search in Google Scholar

Ngo D.-H., Qian Z.-J., Ngo D.-N., Vo T.-S., Wijesekara I., Kim S.-K. (2011). Gallyl chitooligosaccharides inhibit intracellular free radical-mediated oxidation. Food Chem., 128: 974–981.10.1016/j.foodchem.2011.03.128 Search in Google Scholar

No H.K., Meyers S.P. (1995). Preparation and characterization of chitin and chitosan—a review. J. Aquat. Food Prod. Technol., 4: 27–52.10.1300/J030v04n02_03 Search in Google Scholar

Nuengjamnong C., Angkanaporn K. (2018). Efficacy of dietary chitosan on growth performance, haematological parameters and gut function in broilers. Ital. J. Anim. Sci., 17: 428–435.10.1080/1828051X.2017.1373609 Search in Google Scholar

Nwe N., Furuike T., Tamura H. (2009). The mechanical and biological properties of chitosan scaffolds for tissue regeneration templates are significantly enhanced by chitosan from Gongronella butleri. Materials, 2: 374–398.10.3390/ma2020374 Search in Google Scholar

Osho S., Adeola O. (2020). Chitosan oligosaccharide supplementation alleviates stress stimulated by in-feed dexamethasone in broiler chickens. Poultry Sci., 99: 2061–2067.10.1016/j.psj.2019.11.047 Search in Google Scholar

Ouali A., Herrera-Mendez C.H., Coulis G., Becila S., Boudjellal A., Aubry L., Sentandreu M. A. (2006). Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Sci., 74: 44–58.10.1016/j.meatsci.2006.05.010 Search in Google Scholar

Park B.K., Kim M.-M. (2010). Applications of chitin and its derivatives in biological medicine. Int. J. Mol. Sci., 11: 5152–5164.10.3390/ijms11125152 Search in Google Scholar

Pereira T., Fernandes A., Oliveira E., Cônsolo N., Marques O., Maciel T., Pordeus N., Barbosa L., Buarque V., Padilla A. (2020). Serum metabolomic fingerprints of lambs fed chitosan and its association with performance and meat quality traits. Animal, 14: 1987–1998.10.1017/S1751731120000749 Search in Google Scholar

Piccolo G., Iaconisi V., Marono S., Gasco L., Loponte R., Nizza S., Bovera F., Parisi G. (2017). Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Int. J. Mol. Sci., 226: 12–20.10.1016/j.anifeedsci.2017.02.007 Search in Google Scholar

Powell S.R. (2000). The antioxidant properties of zinc. J. Nutr., 130: 1447S–1454S.10.1093/jn/130.5.1447S Search in Google Scholar

Qin C., Du Y., Xiao L., Li Z., Gao X. (2002). Enzymic preparation of water-soluble chitosan and their antitumor activity. Int. J. Biol. Macromol., 31: 111–117.10.1016/S0141-8130(02)00064-8 Search in Google Scholar

Rehman A., Arif M., Sajjad N., Al-Ghadi M.Q., Alagawany M., Abd El-Hack M.E., Almutairi B.O., Amran R.A. Swelum A.A. (2020). Dietary effect of probiotics and prebiotics on broiler performance, carcass, and immunity. Poultry Sci., 99: 6946–6953.10.1016/j.psj.2020.09.043 Search in Google Scholar

Ren J. (2008). Effects of chitosan on production performance and immune function in dairy cattle (in Chinese). Ph.D., Inner Mongolia Agricultural University. Search in Google Scholar

Rikta S.Y. (2019). Application of nanoparticles for disinfection and microbial control of water and wastewater. Nanotechnology in water and wastewater treatment, pp. 159–176.10.1016/B978-0-12-813902-8.00009-5 Search in Google Scholar

Roberts G.A. (1992). Chitin chemistry. 1st ed. Macmillan Press, London, UK.10.1007/978-1-349-11545-7 Search in Google Scholar

Saminathan M., Selamat J., Abbasi Pirouz A., Abdullah N., Zulkifli I. (2018). Effects of nano-composite adsorbents on the growth performance, serum biochemistry, and organ weights of broilers fed with aflatoxin-contaminated feed. Toxins, 10: 345.10.3390/toxins10090345 Search in Google Scholar

Sarwar S.B., Khondokar F., Islam H., Ullah M.A., Araf Y., Sarkar B., Rahman H. (2021). Assessing drug repurposing option for emerging viral diseases: concerns, solutions, and challenges for forthcoming viral battles. J. Adv. Biotechnol. Exp Ther., 4: 74–94.10.5455/jabet.2021.d109 Search in Google Scholar

Sayed-Elahl R.M., El-Shinawy N., Nagy K. (2019). A trial for improvement of kareish cheese quality by using chitosan nanoparticles. EJVS, 50: 69–80.10.21608/ejvs.2020.19943.1135 Search in Google Scholar

Schreiber S.B., Bozell J.J., Hayes D.G., Zivanovic S. (2013). Introduction of primary antioxidant activity to chitosan for application as a multifunctional food packaging material. Food Hydrocoll., 33: 207–214.10.1016/j.foodhyd.2013.03.006 Search in Google Scholar

Sebti I., Martial-Gros A., Carnet-Pantiez A., Grelier S., Coma V. (2005). Chitosan polymer as bioactive coating and film against Aspergillus niger contamination. J. Food Sci., 70: M100–M104.10.1111/j.1365-2621.2005.tb07098.x Search in Google Scholar

Selenius O., Korpela J., Salminen S., Gallego C.G. (2018). Effect of chitin and chitooligosaccharide on in vitro growth of Lactobacillus rhamnosus GG and Escherichia coli TG. Appl. Food Biotechnol., 5: 163–172. Search in Google Scholar

Shaltout F., El-Diasty E., Hassan A.M. (2019). Effect of nano-chitosan and onion extract as coating materials on the quality properties of chicken fillet meat during refrigeration. Glob. Vet., 21: 368–372. Search in Google Scholar

Shang W., Si X., Zhou Z., Li Y., Strappe P., Blanchard C. (2017). Characterization of fecal fat composition and gut derived fecal microbiota in high-fat diet fed rats following intervention with chitooligosaccharide and resistant starch complexes. Food Funct., 8: 4374–4383.10.1039/C7FO01244F Search in Google Scholar

Shen K.-T., Chen M.-H., Chan H.-Y., Jeng J.-H., Wang Y.-J. (2009). Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem. Toxicol., 47: 1864–1871.10.1016/j.fct.2009.04.044 Search in Google Scholar

Shi B., Li D., Piao X., Yan S. (2005). Effects of chitosan on growth performance and energy and protein utilisation in broiler chickens. Br. Poult. Sci., 46: 516–519.10.1080/00071660500190785 Search in Google Scholar

Shi-Bin Y., Hong C. (2012). Effects of dietary supplementation of chitosan on growth performance and immune index in ducks. Afr. J. Biotechnol., 11: 3490–3495.10.5897/AJB11.1648 Search in Google Scholar

Šimůnek J., Tishchenko G., Hodrová B., Bartoňová H. (2006). Effect of chitosan on the growth of human colonic bacteria. Folia Microbiol., 51: 306–308.10.1007/BF02931820 Search in Google Scholar

Sindhi V., Gupta V., Sharma K., Bhatnagar S., Kumari R., Dhaka N. (2013). Potential applications of antioxidants – a review. J. Pharm. Res., 7: 828–835.10.1016/j.jopr.2013.10.001 Search in Google Scholar

Singh K., Mishra A., Sharma D., Singh K. (2019). Antiviral and antimicrobial potentiality of nano drugs. In: Applications of targeted nano drugs and delivery systems, Mohapatra S.S., Ranjan S., Dasgupta N., Mishra R.K., Thomas S. (eds). Elsevier, pp. 343–356.10.1016/B978-0-12-814029-1.00013-2 Search in Google Scholar

Singla A., Chawla M. (2001). Chitosan: Some pharmaceutical and biological aspects − an update. J. Pharm. Pharmacol., 53: 1047–1067.10.1211/0022357011776441 Search in Google Scholar

Sorour M., El Mesalamy M., Elamin A., Salem H. (2021). Assessing the use of chitosan and nano-chitosan for prolonging the shelf life of fresh tilapia fish. DJVS, 7: 14–18.10.21608/djvs.2021.103423.1055 Search in Google Scholar

Spring P., Wenk C., Dawson K., Newman K. (2000). The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poultry Sci., 79: 205–211.10.1093/ps/79.2.205 Search in Google Scholar

Sun T., Zhou D., Xie J., Mao F. (2007). Preparation of chitosan oligomers and their antioxidant activity. Eur. Food Res. Technol., 225: 451–456.10.1007/s00217-006-0439-1 Search in Google Scholar

Suthongsa S., Pichyangkura R., Kalandakanond-Thongsong S., Thongsong B. (2017). Effects of dietary levels of chito-oligosaccharide on ileal digestibility of nutrients, small intestinal morphology and crypt cell proliferation in weaned pigs. Livest. Sci., 198: 37–44.10.1016/j.livsci.2017.02.004 Search in Google Scholar

Świątkiewicz S., Arczewska-Włosek A., Krawczyk J., Puchała M., Józefiak D. (2013). Effects of selected feed additives on the performance of laying hens given a diet rich in maize dried distiller’s grains with solubles (DDGS). Br. Poult. Sci., 54: 478–485.10.1080/00071668.2013.797563 Search in Google Scholar

Świątkiewicz S., Świątkiewicz M., Arczewska-Wlosek A., Józefiak D. (2015). Chitosan and its oligosaccharide derivatives (chito-oligosaccharides) as feed supplements in poultry and swine nutrition. J. Anim. Physiol. Anim. Nutr., 99: 1–12.10.1111/jpn.12222 Search in Google Scholar

Synowiecki J., Al-Khateeb N. A. (2003). Production, properties, and some new applications of chitin and its derivatives. Crit. Rev. Food Sci. Nutr., 43:145–171.10.1080/10408690390826473 Search in Google Scholar

Tan H., Chu C.R., Payne K.A., Marra K.G. (2009). Injectable in situ forming biodegradable chitosan–hyaluronic acid-based hydrogels for cartilage tissue engineering. Biomaterials, 30: 2499–2506.10.1016/j.biomaterials.2008.12.080 Search in Google Scholar

Tang Z.-R., Yin Y.-L., Nyachoti C. M., Huang R.-L., Li T.-J., Yang C., Yang X.-J., Gong, J., Peng J., Qi D.-S. (2005). Effect of dietary supplementation of chitosan and galacto-mannan-oligosaccharide on serum parameters and the insulin-like growth factor-I mRNA expression in early-weaned piglets. Domest. Anim. Endocrinol., 28: 430–441.10.1016/j.domaniend.2005.02.003 Search in Google Scholar

Tiyaboonchai W. (2013). Chitosan nanoparticles: a promising system for drug delivery. NUJST, 11: 51–66. Search in Google Scholar

Tolaimate A., Desbrieres J., Rhazi M., Alagui A. (2003). Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polymer, 44: 7939–7952.10.1016/j.polymer.2003.10.025 Search in Google Scholar

Tomida H., Fujii T., Furutani N., Michihara A., Yasufuku T., Akasaki K., Maruyama T., Otagiri M., Gebicki J. M., Anraku M. (2009). Antioxidant properties of some different molecular weight chitosans. Carbohydr. Res., 344: 1690–1696.10.1016/j.carres.2009.05.006 Search in Google Scholar

Tufan T., Arslan C., Sari M., Önk K., Deprem T., Celik E. (2015). Effects of chitosan oligosaccharides addition to Japanese quail’s diets on growth, carcass traits, liver and intestinal histology, and intestinal microflora. Kafkas Univ. Vet. Fak. Derg., 21: 665–671. Search in Google Scholar

Van der Weken H., Cox E., Devriendt B. (2021) Advances in oral subunit vaccine design. Vaccines, 9: 1.10.3390/vaccines9010001782215433375151 Search in Google Scholar

Vila-Donat P., Marín S., Sanchis V., Ramos A. (2018). A review of the mycotoxin adsorbing agents, with an emphasis on their multibinding capacity, for animal feed decontamination. Food Chem. Toxicol., 114: 246–259.10.1016/j.fct.2018.02.044 Search in Google Scholar

Villiers C., Chevallet M., Diemer H., Couderc R., Freitas H., Van Dorsselaer A., Marche P. N., Rabilloud T. (2009). From secretome analysis to immunology: chitosan induces major alterations in the activation of dendritic cells via a TLR4-dependent mechanism. Mol. Cell Proteomics., 8: 1252–1264.10.1074/mcp.M800589-MCP200 Search in Google Scholar

Walsh A., Sweeney T., Bahar B., Flynn B., O’Doherty J. (2012). The effect of chitooligosaccharide supplementation on intestinal morphology, selected microbial populations, volatile fatty acid concentrations and immune gene expression in the weaned pig. Animal, 6: 1620–1626.10.1017/S1751731112000481 Search in Google Scholar

Wan J., Yang K., Xu Q., Chen D., Yu B., Luo Y., He J. (2016). Dietary chitosan oligosaccharide supplementation improves foetal survival and reproductive performance in multiparous sows. RSC Adv., 6: 70715–70722.10.1039/C6RA13294D Search in Google Scholar

Wan J., Jiang F., Xu Q., Chen D., Yu B., Huang Z., Mao X., Yu J., He J. (2017). New insights into the role of chitosan oligosaccharide in enhancing growth performance, antioxidant capacity, immunity and intestinal development of weaned pigs. RSC Adv., 7: 9669–9679.10.1039/C7RA00142H Search in Google Scholar

Wan J., Xu Q., He J. (2018). Maternal chitosan oligosaccharide supplementation during late gestation and lactation affects offspring growth. Ital. J. Anim. Sci., 17: 994–1000.10.1080/1828051X.2018.1435313 Search in Google Scholar

Wang X., Du Y., Bai X., Li S. (2003). The effect of oligochitosan on broiler gut flora, microvilli density, immune function and growth performance. Acta Zoonutrimenta Sinica, 15. Search in Google Scholar

Wu K., Guo Y. (1997). Study on the diapause conditions of different geographical populations of cotton bollworm (Helicoverpa armigera Hübner) in China. China Agri. Scient. Press., 109–114. Search in Google Scholar

Xiao D., Tang Z., Yin Y., Zhang B., Hu X., Feng Z., Wang J. (2013). Effects of dietary administering chitosan on growth performance, jejunal morphology, jejunal mucosal sIgA, occluding, claudin-1 and TLR4 expression in weaned piglets challenged by enterotoxigenic Escherichia coli. Int. Immunopharmacol., 17: 670–676.10.1016/j.intimp.2013.07.023 Search in Google Scholar

Xiao D., Wang Y., Liu G., He J., Qiu W., Hu X., Feng Z., Ran M., Nyachoti C.M., Kim S. W. (2014). Effects of chitosan on intestinal inflammation in weaned pigs challenged by enterotoxigenic Escherichia coli. PLoS One, 9: e104192.10.1371/journal.pone.0104192 Search in Google Scholar

Xiao D., Ren W., Bin P., Chen S., Yin J., Gao W., Liu G., Nan Z., Hu X., He J. (2016). Chitosan lowers body weight through intestinal microbiota and reduces IL-17 expression via mTOR signalling. J. Funct. Foods., 22: 166–176.10.1016/j.jff.2016.01.009 Search in Google Scholar

Xiaofeng C., Xuemei D., Xi P., Xiaocong L., Jing F. (2017). Effects of chitosan oligosaccharides supplementation on the cell cycle of immune organs in broilers. Kafkas Univ. Vet. Fak. Derg., 23: 1003–1006. Search in Google Scholar

Xie W., Xu P., Liu Q. (2001). Antioxidant activity of water-soluble chitosan derivatives. Bioorganic Med. Chem., 11: 1699–1701.10.1016/S0960-894X(01)00285-2 Search in Google Scholar

Xie C., Wu X., Long C., Wang Q., Fan Z., Li S., Yin Y. (2016). Chitosan oligosaccharide affects antioxidant defense capacity and placental amino acids transport of sows. BMC Vet. Res., 12: 1–8.10.1186/s12917-016-0872-8 Search in Google Scholar

Xu Y., Shi B., Yan S., Li T., Guo Y., Li J. (2013). Effects of chitosan on body weight gain, growth hormone and intestinal morphology in weaned pigs. Asian-Australas. J. Anim. Sci., 26: 1484.10.5713/ajas.2013.13085 Search in Google Scholar

Xu Y., Shi B., Yan S., Li J., Li T., Guo Y., Guo X. (2014). Effects of chitosan supplementation on the growth performance, nutrient digestibility, and digestive enzyme activity in weaned pigs. Czech J. Anim. Sci., 59: 156–163.10.17221/7339-CJAS Search in Google Scholar

Xu Y., Wang Z., Qin Z., Yan S., Shi B. (2018). Effects of chitosan addition on growth performance, diarrhoea, anti-oxidative function and serum immune parameters of weaned piglets. S. Afr. J. Anim. Sci., 48: 142–150.10.4314/sajas.v48i1.16 Search in Google Scholar

Xu Q., Azzam M.M.M., Zou X., Dong X. (2020). Effects of chitooligosaccharide supplementation on laying performance, egg quality, blood biochemistry, antioxidant capacity and immunity of laying hens during the late laying period. Ital. J. Anim. Sci., 19: 1180–1187.10.1080/1828051X.2020.1827991 Search in Google Scholar

Ya-Ping Z. (2012). Effect of chitosan on the production performance of rex rabbit. Chin. J. Rabbit Farm., 11. Search in Google Scholar

Yan L., Lee J., Meng Q., Ao X., Kim I. (2010). Evaluation of dietary supplementation of delta-aminolevulinic acid and chito-oligosaccharide on production performance, egg quality and hematological characteristics in laying hens. Asian-Australas. J. Anim. Sci., 23: 1028–1033.10.5713/ajas.2010.90639 Search in Google Scholar

Yang C., Ferket P., Hong Q., Zhou J., Cao G., Zhou L., Chen A. (2012). Effect of chito-oligosaccharide on growth performance, intestinal barrier function, intestinal morphology and cecal microflora in weaned pigs. J. Anim. Sci., 90: 2671–2676.10.2527/jas.2011-4699 Search in Google Scholar

Yien L., Zin N.M., Sarwar A., Katas H. (2012). Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int. J. Biomater., 632698.10.1155/2012/632698 Search in Google Scholar

Yin Y.-L., Tang Z., Sun Z., Liu Z., Li T., Huang R., Ruan Z., Deng Z., Gao B., Chen L. (2008). Effect of galacto-mannan-oligosaccharides or chitosan supplementation on cytoimmunity and humoral immunity in early-weaned piglets. Asian-Australas. J. Anim. Sci., 21: 723–731.10.5713/ajas.2008.70408 Search in Google Scholar

Yin Y., Huang R., Li T., Ruan Z., Xie M., Deng Z., Hou Y., Wu G. (2010). Amino acid metabolism in the portal-drained viscera of young pigs: effects of dietary supplementation with chitosan and pea hull. Amino Acids, 39: 1581–1587.10.1007/s00726-010-0577-4 Search in Google Scholar

Yin J., Wu M., Xiao H., Ren W., Duan J., Yang G., Li T., Yin, Y. (2014). Development of an antioxidant system after early weaning in piglets. J. Anim. Sci., 92: 612–619.10.2527/jas.2013-6986 Search in Google Scholar

Yoon H.J., Moon M.E., Park H.S., Im S.Y., Kim Y.H. (2007). Chitosan oligosaccharide (COS) inhibits LPS-induced inflammatory effects in RAW 264.7 macrophage cells. Biochem. Biophys. Res. Commun., 358: 954–959.10.1016/j.bbrc.2007.05.042 Search in Google Scholar

Yoon H.J., Moon M.E., Park H.S., Kim H.W., Im S.Y., Lee J.H., Kim Y.H. (2008). Effects of chitosan oligosaccharide (COS) on the glycerol-induced acute renal failure in vitro and in vivo. Food Chem. Toxicol., 46: 710–716.10.1016/j.fct.2007.09.111 Search in Google Scholar

Zaharoff D.A., Rogers C.J., Hance K.W., Schlom J., Greiner J.W. (2007). Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine, 25: 2085–2094.10.1016/j.vaccine.2006.11.034 Search in Google Scholar

Zanferari F., Vendramini T., Rentas M., Gardinal R., Calomeni G., Mesquita L., Takiya C., Rennó F. (2018). Effects of chitosan and whole raw soybeans on ruminal fermentation and bacterial populations, and milk fatty acid profile in dairy cows. Int. J. Dairy Sci., 101: 10939–10952.10.3168/jds.2018-14675 Search in Google Scholar

Zhang H., Neau S.H. (2001). In vitro degradation of chitosan by a commercial enzyme preparation: effect of molecular weight and degree of deacetylation. Biomaterials, 22: 1653–1658.10.1016/S0142-9612(00)00326-4 Search in Google Scholar

Zhang P., Liu W., Peng Y., Han B., Yang Y. (2014). Toll like receptor 4 (TLR4) mediates the stimulating activities of chitosan oligosaccharide on macrophages. Int. Immunopharmacol., 23: 254–261.10.1016/j.intimp.2014.09.007 Search in Google Scholar

Zheng L.-Y., Zhu J.-F. (2003). Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr. Polym., 54: 527–530.10.1016/j.carbpol.2003.07.009 Search in Google Scholar

Zhou T.X., Chen Y.J., Yoo J., Huang Y., Lee J., Jang H., Shin S., Kim H., Cho J., Kim, I. (2009). Effects of chitooligosaccharide supplementation on performance, blood characteristics, relative organ weight, and meat quality in broiler chickens. Poultry Sci., 88: 593–600.10.3382/ps.2008-00285 Search in Google Scholar

Zhu L., Song Z., Lin H., Yuan L. (2003). Effects of chitosan on growth performance and immnue function in broiler chickens. China Feed, 4: 15–17. Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine