Otwarty dostęp

Effects of different carbon sources on water quality, biofloc quality, and the productivity of Nile tilapia reared in biofloc-based ponds


Zacytuj

Abdel-Tawwab M. (2011). Natural food selectivity changes with weights of Nile tilapia, Oreochromis niloticus (Linnaeus), reared in fertilized earthen ponds. J. Appl. Aquacult., 23: 58–66.10.1080/10454438.2011.549785 Search in Google Scholar

Adineh H., Naderi M., Khademi Hamidia M., Harsij M. (2019). Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density. Fish Shellfish Immunol., 95: 440–448.10.1016/j.fsi.2019.10.057 Search in Google Scholar

Ahmad I., Leya T., Saharan N., Asanaru Majeedkutty B.R., Rathore G., Gora A.H., Bhat I.A., Verma A.K. (2019). Carbon sources affect water quality and haemato-biochemical responses of Labeo rohita in zero-water exchange biofloc system. Aquacult. Res., 50: 2879–2887.10.1111/are.14241 Search in Google Scholar

AOAC (2005). Official Methods of Analysis. Association of Official Analytical Chemists, Arlington,VA, USA. Search in Google Scholar

Avnimelech Y. (2009). Biofloc technology: A practical guide book. World Aquaculture Society, Baton Rouge, Louisiana, USA, pp. 182. Search in Google Scholar

Bakhshi F.H., Najdegerami E., Manaffr R., Tokmechi A., Rahmani Farah K., Shalizar Jalali A. (2018). Growth performance, haematology, antioxidant status, immune response and histology of common carp (Cyprinus carpio L.) fed bioflc grown on different carbon sources. Aquacult. Res., 49: 393–403.10.1111/are.13469 Search in Google Scholar

Becerril-Cortes D., Monroy-Dosta M., Emerenciano M., CastroMejia G., Sofia B., Bermudez S., Correa G.V. (2018). Effect on nutritional composition of produced bioflocs with different carbon sources (molasses, coffee waste and rice bran) in Biofloc system. Intern. J. Fish. Aquat. St., 6: 541–547. Search in Google Scholar

Boyd C.E. (1984). Water quality in warm water fishponds. Auburn University Agriculture Experimental Station, Auburn, AL, USA. Search in Google Scholar

Boyd C.E., Tucker C.S. (2012). Pond aquaculture water quality management. Springer Science & Business Media, Berlin, Germany. Search in Google Scholar

Correia E., Wilkenfeld J., Morris T., Weic L., Prangnell D., Samocha T. (2014). Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquacult. Eng., 59: 48–54.10.1016/j.aquaeng.2014.02.002 Search in Google Scholar

Crab R., Chielens B., Wille M., Bossier P., Verstraete W. (2010). The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquacult. Res., 41: 559–567.10.1111/j.1365-2109.2009.02353.x Search in Google Scholar

Deng M., Chen J., Gou J., Hou J., Li D., He X. (2018). The effect of different carbon sources on water quality, microbial community and structure of biofloc systems. Aquaculture, 482: 103–110.10.1016/j.aquaculture.2017.09.030 Search in Google Scholar

Durigon E.G., Lazzari R., Uczay J., de Alcântara Lopes D.L., Jerônimo G.T., Sgnaulin T., Emerenciano M.G.C. (2020). Biofloc technology (BFT): adjusting the levels of digestible protein and digestible energy in diets of Nile tilapia juveniles raised in brackish water. Aquacult. Fish, 5: 42–51.10.1016/j.aaf.2019.07.001 Search in Google Scholar

Dytham C. (2011). Choosing and using statistics: A biologist’s guide. Blackwell Science Ltd., London, UK. Search in Google Scholar

Ekasari J., Rivandi D., Firdausi A., Surawidjaja E., Zairin M., Bossier P., De Schryver P. (2015). Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture, 441: 72–77.10.1016/j.aquaculture.2015.02.019 Search in Google Scholar

El-Sayed A.-F.M. (2019). Tilapia culture. 2nd ed. Academic Press, Elsevier Science Publishing Co Inc., San Diego, USA. Search in Google Scholar

Ferreira G.S., Bolívar N.C., Pereira S.A., Guertler C., Vieira F.V., Mourino J.L.P., Seiffert W.Q. (2015). Microbial biofloc as source of probiotic bacteria for the culture of Litopenaeus vannamei. Aquaculture, 448: 273–279.10.1016/j.aquaculture.2015.06.006 Search in Google Scholar

Fleckenstein L.J., Kring N.A., Tierney T.W., Fisk J.C., Lawson B.C., Ray A.J. (2020). The effects of artificial substrate and stocking density on Pacific white shrimp (Litopenaeus vannamei) performance and water quality dynamics in high tunnel-based biofloc systems. Aquacult. Eng., 90: 102093.10.1016/j.aquaeng.2020.102093 Search in Google Scholar

García-Ríos L., Miranda-Baeza A., Coelho-Emerenciano M.G., Huerta-Rábago J.A., Osuna-Amarillas P. (2019). Biofloc technology (BFT) applied to tilapia fingerlings production using different carbon sources: emphasis on commercial applications. Aquaculture, 502: 26–31.10.1016/j.aquaculture.2018.11.057 Search in Google Scholar

Hoang M.N., Nguyen P.N., Bossier P. (2020). Water quality, animal performance, nutrient budgets and microbial community in the biofloc-based polyculture system of white shrimp, Litopenaeus vannamei and gray mullet, Mugil cephalus. Aquaculture, 515: 734610.10.1016/j.aquaculture.2019.734610 Search in Google Scholar

Hostins B., Braga A., Lopes D., Wasielesky W., Poersch L. (2015). Effect of temperature on nursery and compensatory growth of pink shrimp Farfantepenaeus brasiliensis reared in a superintensive biofloc system. Aquacult. Eng., 66: 62–67.10.1016/j.aquaeng.2015.03.002 Search in Google Scholar

Ju Z.Y., Forster I., Conquest L., Dominy W., Kuo W.C., David Horgen F. (2008). Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquacult. Res., 39: 118–133.10.1111/j.1365-2109.2007.01856.x Search in Google Scholar

Khanjani M.H., Sharifinia M. (2020). Biofloc technology as a promising tool to improve aquaculture production. Rev. Aquacult., 12: 1836–1850.10.1111/raq.12412 Search in Google Scholar

Khanjani M.H., Sajjadi M.M., Alizadeh M., Sourinejad I. (2017). Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquacult. Res., 48: 1491–1501.10.1111/are.12985 Search in Google Scholar

Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021 a). Biofloc system applied to Nile tilapia (Oreochromis niloticus) farming using different carbon sources: Growth performance, carcass analysis, digestive and hepatic enzyme activity. Iran. J. Fish. Sci., 20: 490–513. Search in Google Scholar

Khanjani M.H, Alizadeh M., Sharifinia M. (2021 b). Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquacult. Int., 29: 307–321.10.1007/s10499-020-00627-9 Search in Google Scholar

Khanjani M.H., Sharifinia M., Hajirezaee S. (2022). Recent progress towards the application of bioflc technology for tilapia farming. Aquaculture, 552: 738021.10.1016/j.aquaculture.2022.738021 Search in Google Scholar

Lopez-Elias J., Moreno-Arias A., Miranda-Baeza A., Martinez Cordova L., Rivas-Vega M., Marquez-Rios E. (2015). Proximate composition of bioflocs in culture systems containing hybrid red tilapia fed diets with varying levels of vegetable meal inclusion. North Amer. J. Aquacult., 77: 102–109.10.1080/15222055.2014.963767 Search in Google Scholar

Mansour A.T., Estebanb M.A. (2017). Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 64: 202–209.10.1016/j.fsi.2017.03.025 Search in Google Scholar

Martinez-Porchas M., Ezquerra-Brauer M., Mendoza-Cano F., Chan Higuera J.E., Vargas-Albores F., Martinez-Cordova L.R. (2020). Effect of supplementing heterotrophic and photoautotrophic biofloc, on the production response, physiological condition and post-harvest quality of the whiteleg shrimp, Litopenaeus vannamei. Aquacult. Rep., 16: 100257.10.1016/j.aqrep.2019.100257 Search in Google Scholar

Miao S., Hu J., Wan W., Han B., Zhou Y., Xin Z., Sun L. (2020). Biofloc technology with addition of different carbon sources altered the antibacterial and antioxidant response in Macrobrachium rosenbergii to acute stress. Aquaculture, 525: 735280.10.1016/j.aquaculture.2020.735280 Search in Google Scholar

Minabi K., Sourinejad I., Alizadeh M., Ghatrami R.E., Khanjani H.M. (2020). Effects of different carbon to nitrogen ratios in the biofloc system on water quality, growth, and body composition of common carp (Cyprinus carpio L.) fingerlings. Aquacult. Int., 28: 1883–1898.10.1007/s10499-020-00564-7 Search in Google Scholar

Mirzakhani N., Ebrahimi E., Jalali S.A.H., Ekasari J. (2019). Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C:N ratios. Aquaculture, 512: 734235.10.1016/j.aquaculture.2019.734235 Search in Google Scholar

Najdegerami E.H., Bakhshi F., Lakani F.B. (2016). Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zerowater exchange system. Fish Physiol. Biochem., 42: 457–465.10.1007/s10695-015-0151-9 Search in Google Scholar

Nunes Caldini N., De Holanda Cavalcante D., Rocha Filho P.R.N., Carmo e Sá M.V. (2015). Feeding Nile tilapia with artificial diets and dried bioflocs biomass. Acta Scient., 37: 335–341.10.4025/actascianimsci.v37i4.27043 Search in Google Scholar

Panigrahi A., Saranya C., Sundaram M., Vinoth Kannan S.R., Das R.R., Kumar R.S., Rajesh P., Otta S.K. (2018). Carbon: nitrogen (C:N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish Shellfish Immunol., 81: 329–337.10.1016/j.fsi.2018.07.035 Search in Google Scholar

Rajkumar M., Pandey P.K., Aravind R., Vennila A., Bharti V., Purushothaman C.S. (2016). Effect of different biofloc system on water quality, biofloc composition and growth performance in Litopenaeus vannamei (Boone, 1931). Aquac. Res., 47: 3432–3444.10.1111/are.12792 Search in Google Scholar

Shewry P.R., Hey S.J. (2015). The contribution of wheat to human diet and health. Food Energy Secur., 4: 178–202.10.1002/fes3.64 Search in Google Scholar

Suita S.M., Ballester E.L.C., Abreu P.C., Wasielesky W. Jr. (2015). Dextrose as carbon source in the culture of Litopenaeus vannamei (Boone, 1931) in a zero exchange system. Lat. Amer. J. Aquat. Res., 43: 526–533.10.3856/vol43-issue3-fulltext-13 Search in Google Scholar

Venkat H.K., Sahu N.P., Jain K.K. (2004). Effct of feeding Lactobacillus-based probiotics on the gut microflra, growth and survival of postlarvae of Macrobrachium rosenbergii (de Man). Aquacult. Res., 35: 501–507.10.1111/j.1365-2109.2004.01045.x Search in Google Scholar

Wang G., Yu E., Xie J., Yu D., Li Z., Luo W., Qiu L., Zheng Z. (2015). Effect of C:N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp, Carassius auratus. Aquaculture, 443: 98– 104.10.1016/j.aquaculture.2015.03.015 Search in Google Scholar

Wei Y., Liao S., Wang A. (2016). The effect of different carbon sources on the nutritional composition, microbial community and structure of bioflocs. Aquaculture, 465: 88–93.10.1016/j.aquaculture.2016.08.040 Search in Google Scholar

Xu W.J., Morris T.C., Samocha T.M. (2016). Effects of C:N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453: 169–175.10.1016/j.aquaculture.2015.11.021 Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine