Otwarty dostęp

Effect of high hydrostatic pressure on the in vitro development and molecular quality of transgenic rabbit embryos derived from nano-transfected zygotes


Zacytuj

Asfaw A., Assefa A. (2019). Animal transgenesis technology: A review. Cogent Food Agricult., 5: 1686802.10.1080/23311932.2019.1686802 Search in Google Scholar

Beddoes C.M., Case C.P., Briscoe W.H. (2015). Understanding nanoparticle cellular entry: A physicochemical perspective. Adv. Colloid Interface Sci., 218: 48–68.10.1016/j.cis.2015.01.007 Search in Google Scholar

Behzadi S., Serpooshan V., Tao W., Hamaly M.A., Alkawareek M.Y., Dreaden E.C., Brown D., Alkilany A.M., Farokhzad O.C., Mahmoudi M. (2017). Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev., 46: 4218–4244.10.1039/C6CS00636A Search in Google Scholar

Bock I., Losonczi E., Mamo S., Polgar Z., Harnos A., Dinnyes A., Pribenszky C. (2010). Stress tolerance and transcriptional response in mouse embryos treated with high hydrostatic pressure to enhance cryotolerance. Cryo Letters, 31: 401–412. Search in Google Scholar

Bogliolo L., Ariu F., Leoni G., Uccheddu S., Bebbere D. (2011). High hydrostatic pressure treatment improves the quality of in vitro-produced ovine blastocysts. Reprod. Fertil. Dev., 23: 809–817.10.1071/RD11023 Search in Google Scholar

Chernousova S., Epple M. (2017). Live-cell imaging to compare the transfection and gene silencing efficiency of calcium phosphate nanoparticles and a liposomal transfection agent. Gene Ther., 24: 282–289.10.1038/gt.2017.13 Search in Google Scholar

Choi Y., Kim H.A., Kim K.W., Lee B.T. (2018). Comparative toxicity of silver nanoparticles and silver ions to Escherichia coli. J. Environ. Sci. (China), 66: 50–60.10.1016/j.jes.2017.04.028 Search in Google Scholar

De M., Ghosh P.S., Rotello V.M. (2008). Applications of nanoparticles in biology. Adv. Mater., 20: 4225–4241.10.1002/adma.200703183 Search in Google Scholar

Ding Y., Jiang Z., Saha K., Kim C.S., Kim S.T., Landis R.F., Rotello V.M. (2014). Gold nanoparticles for nucleic acid delivery. Mol. Ther., 22: 1075–1083.10.1038/mt.2014.30 Search in Google Scholar

Du Y., Lin L., Schmidt M., Bøgh I.B., Kragh P.M., Sørensen C.B., Li J., Purup S., Pribenszky C., Molnár M., Kuwayama M., Zhang X., Yang H., Bolund L., Vajta G. (2008 a). High hydrostatic pressure treatment of porcine oocytes before handmade cloning improves developmental competence and cryosurvival. Cloning Stem Cells, 10: 325–330.10.1089/clo.2007.008918479211 Search in Google Scholar

Du Y., Pribenszky C.S., Molnár M., Zhang X., Yang H., Kuwayama M., Pedersen A.M., Villemoes K., Bolund L., Vajta G. (2008 b). High hydrostatic pressure: a new way to improve in vitro developmental competence of porcine matured oocytes after vitrification. Reproduction, 135: 13–17.10.1530/REP-07-036218159079 Search in Google Scholar

Encabo-Berzosa M.M., Sancho-Albero M., Sebastian V., Irusta S., Arruebo M., Santamaria J., Martín Duque P. (2017). Polymer functionalized gold nanoparticles as nonviral gene delivery reagents. J. Gene Med., 19: e2964.10.1002/jgm.2964 Search in Google Scholar

Ghosh P., Han G., De M., Kim C.K., Rotello V.M. (2008). Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev., 60: 1307–1315.10.1016/j.addr.2008.03.016 Search in Google Scholar

Huang Y.W., Cambre M., Lee H.J. (2017). The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int. J. Mol. Sci., 18: 2702.10.3390/ijms18122702 Search in Google Scholar

Jiang Z., Harrington P., Zhang M., Marjani S.L., Park J., Kuo L., Pribenszky C., Tian X.C. (2016). Effects of high hydrostatic pressure on expression profiles of in vitro produced vitrified bovine blastocysts. Sci. Rep., 6: 21215.10.1038/srep21215 Search in Google Scholar

Kettler K., Veltman K., van de Meent D., van Wezel A., Hendriks A.J. (2014). Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ. Toxicol. Chem., 33: 481–492.10.1002/etc.2470 Search in Google Scholar

Lin L., Luo Y., Sørensen P., Prætorius H., Vajta G., Callesen H., Pribenszky C., Bolund L., Kristensen T.N. (2014). Effects of high hydrostatic pressure on genomic expression profiling of porcine parthenogenetic activated and cloned embryos. Reprod. Fertil. Dev., 26: 469–484.10.1071/RD13037 Search in Google Scholar

Neuhaus B., Tosun B., Rotan O., Frede A., Westendorf A.M., Epple M. (2016). Nanoparticles as transfection agents: a comprehensive study with ten different cell lines. RSC Adv., 6: 18102– 18112.10.1039/C5RA25333K Search in Google Scholar

Park M.R., Gurunathan S., Choi Y.J., Kwon D.N., Han J.W., Cho S.G., Park C., Seo H.G., Kim J.H. (2013). Chitosan nanoparticles cause pre- and postimplantation embryo complications in mice. Biol. Reprod., 88: 88.10.1095/biolreprod.112.107532 Search in Google Scholar

Patil S., Gao Y.G, Lin X., Li Y., Dang K., Tian Y., Zhang W.J., Jiang S.F, Qadir A., Qian A.R. (2019). The development of functional non-viral vectors for gene delivery. Int. J. Mol. Sci., 4: 5491.10.3390/ijms20215491 Search in Google Scholar

Pribenszky C., Vajta G. (2011). Cells under pressure: how sublethal hydrostatic pressure stress treatment increases gametes’ and embryos’ performance. Reprod. Fertil. Dev., 23: 48–55.10.1071/RD10231 Search in Google Scholar

Pribenszky C., Du Y., Molnár M., Harnos A., Vajta G. (2008). Increased stress tolerance of matured pig oocytes after high hydrostatic pressure treatment. Anim. Reprod. Sci., 106: 200–207.10.1016/j.anireprosci.2008.01.016 Search in Google Scholar

Pribenszky C., Vajta G., Molnar M., Du Y., Lin L., Bolund L., Yovich, J. (2010). Stress for stress tolerance? A fundamentally new approach in mammalian embryology. Biol. Reprod., 83: 690–697.10.1095/biolreprod.110.083386 Search in Google Scholar

Rana S., Bajaj A., Mout R., Rotello V.M. (2012). Monolayer coated gold nanoparticles for delivery applications., Adv. Drug Deliv. Rev., 64: 200–216.10.1016/j.addr.2011.08.006 Search in Google Scholar

Rizvi S.A.A., Saleh A.M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 26: 64–70.10.1016/j.jsps.2017.10.012 Search in Google Scholar

Romek M., Kucia M., Gajda B., Krzysztofowicz E., Smorag Z. (2019). Effect of high hydrostatic pressure on mitochondrial activity, reactive oxygen species level and developmental competence of cultured pig embryos. Theriogenology, 140: 99–108.10.1016/j.theriogenology.2019.08.013 Search in Google Scholar

Santos J.A., Liarte D.B., Ribeiro A.B., Rizzo M.S., da Costa M.P., Osajima J.A., Silva-Filho E.C. (2021). Biopolymeric materials used as nonviral vectors: a review. Polysaccharides, 2: 100–109.10.3390/polysaccharides2010007 Search in Google Scholar

Sarkar B., Verma S.K., Akhtar J., Netam S.P., Gupta S.K., Panda P.K., Mukherjee K. (2018). Molecular aspect of silver nanoparticles regulated embryonic development in zebrafish (Danio rerio) by Oct-4 expression. Chemosphere, 206: 560–567.10.1016/j.chemosphere.2018.05.018 Search in Google Scholar

Selby L.I., Cortez-Jugo C.M., Such G.K., Johnston A.P.R. (2017). Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 9: e1452.10.1002/wnan.1452 Search in Google Scholar

Siqueira Filho E., Caixeta E.S., Pribenszky C., Molnar M., Horvath A., Harnos A., Franco M.M., Rumpf R. (2011). Vitrification of bovine blastocysts pretreated with sublethal hydrostatic pressure stress: evaluation of post-thaw in vitro development and gene expression. Reprod. Fertil. Dev., 23: 585–590.10.1071/RD10203 Search in Google Scholar

Taylor U., Garrels W., Barchanski A., Peterson S., Sajti L., Lucas-Hahn A., Gamrad L., Baulain U., Klein S., Kues W.A., Barcikowski S., Rath D. (2014). Injection of ligand-free gold and silver nanoparticles into murine embryos does not impact pre-implantation development. Beilstein J. Nanotechnol., 5: 677–688.10.3762/bjnano.5.80 Search in Google Scholar

Taylor U., Tiedmann D., Rehbock C., Kues W.A., Barcikowski S., Rath D. (2015). Influence of gold, silver and gold-silver nanoparticles on germ cell function and embryo development. Beilstein J. Nanotechnol., 6: 651–664.10.3762/bjnano.6.66 Search in Google Scholar

Trigal B., Muñoz M., Gómez E., Caamaño J.N., Martin D., Carrocera S., Casais R., Diez C. (2013). Cell counts and survival to vitrification of bovine in vitro produced blastocysts subjected to sublethal high hydrostatic pressure. Reprod. Domest. Anim., 48: 200–206.10.1111/j.1439-0531.2012.02131.x Search in Google Scholar

Xie X., Liao J., Shao X., Li Q., Lin Y. (2017). The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles. Sci. Rep., 7: 3827.10.1038/s41598-017-04229-z Search in Google Scholar

Zoroddu M.A., Medici S., Ledda A., Nurchi V.M., Lachowicz J.I., Peana M. (2014). Toxicity of nanoparticles. Curr. Med. Chem., 21: 3837–3853.10.2174/0929867321666140601162314 Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine